industry news ♦ compound semiconductor ♦ news digest
devices. Figure 2 shows a Scanning Electron Microscope (SEM) image of one such device built using electron-beam lithography that incorporates a passive waveguide integrated with an active waveguide.
The author of this article, Vinod Menon, is an associate professor of physics. He joined CUNY in 2004 after a postdoctoral fellowship at Princeton University. He received his PhD degree in physics from the University of Massachusetts in 2001.
MOCVD Tool Shipments to Soar to 4000 between 2010 & 2013
IMS Research report on the LED market says in the last quarter, Aixtron held a 60% market share, dominating in China and Taiwan. Veeco’s multi- wafer share rose by 5% to 37% on the strength of rapid growth and share gains in South Korea where it dominated.
IMS Research’s Quarterly GaN LED Supply Report released last week determined that over 300 MOCVD systems were installed in Q2 2010 to serve the rapidly growing high brightness (HB) LED market.
Figure 2. Scanninge Electron Microscope image of an active waveguide consisting of a quantum- dot-embedded SU-8 photoresist (Microchem Inc.) integrated with a passive waveguide.
One of the key issues in constructing planar photonic circuits is the effect of the polymer host matrix on the optical properties of the quantum dots. Results of steady-state and time-resolved luminescence measurements indicated that poly(methyl methacrylate) is a good host with minimal detrimental effects.
This work potentially opens up new areas of application for colloidal quantum dots. The combination of materials research for identifying suitable host matrices and of simpler fabrication techniques, such as soft lithography, makes it possible to realize low-cost PICs, potentially even on flexible substrates.
The researchers say their future plans include electrically pumped versions of the VCSEL, single- photon sources, planar microresonators, and active photonic crystals using colloidal quantum-dot composites.
This work was supported by the US Army Research Office (contract W911 NF-07-1-0397).
This segment is benefitting from rapid gains in penetration into the notebook PC, LCD monitor, LCD TV and general lighting markets as well as a healthy subsidy in China. The report also shows that LED capacity will need to rise by 352% from 2009 to 2014 to keep up with demand, driving tool shipments throughout the HB LED supply chain.
According to IMS Research SVP Ross Young, “MOCVD is the single hottest category in the semiconductor manufacturing space with shipments expected to rise by nearly 500% in 2010 and to keep growing through 2013. With TVs, monitors and general lighting still early in the adoption cycle and the Chinese government encouraging a healthy LED infrastructure with a generous $1.5M subsidy per tool, this segment should remain hot. We now count over 80 manufacturers of epi wafers with additional companies entering soon.”
The report says Aixtron continued to lead the multi- wafer MOCVD market with a 60% share. China was its fastest growing region which overtook Korea as its #2 region. The firm held a dominant share in Taiwan and China in Q2’10, but lost ground in Korea.
Veeco’s multi-wafer share rose from 32% in Q1’10 August/September 2010
www.compoundsemiconductor.net 55
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213