This page contains a Flash digital edition of a book.
news digest ♦ compound semiconductor ♦ industry news solar cells.


Researchers at SPIE have now produced a solution-processed, mechanically flexible vertical- cavity surface-emitting laser (VCSEL) and planar photonic devices using colloidal quantum dots as the active medium.


The entire VCSEL structure, including a distributed- Bragg-reflector (DBR) mirror, is fabricated by spin coating on a glass substrate.


Figure 1(a) shows a schematic drawing of the 1D microcavity. Alternating layers of polymers of two different refractive indices were stacked to form the DBR mirrors. The high- and low-refractive-index polymers chosen were poly(N-vinylcarbazole) (PVK) and cellulose acetate (CA), with refractive indices of 1.683 and 1.475 at 600nm, respectively.


The scientists chose solvents in a way that prevented the solvent for one polymer from dissolving the other ; PVK is soluble in nonpolar solvents (such as chlorobenzene), while CA is soluble in polar solvents, such as alcohol.


The half-wavelength-cavity layer was formed by Indium Gallium Phosphide (InGaP) quantum dots emitting at 650nm, embedded in a PVK host.


The fabricated microcavity structure was peeled off the glass substrate to form a freestanding structure.


Figure 1(b) shows photographs of the microcavity, both freestanding and on a cylindrical surface. The device demonstrated lasing under optical pumping. Figure 1(c) shows the average output power as a function of average pump power, indicating a lasing threshold of 27mW and a slope efficiency (top emission) of ~12%.


Figure 1. (a) Schematic drawing of a solution- processed, all-polymer microcavity. (b) Photograph of a freestanding microcavity containing embedded quantum dots. The scale bar corresponds to 2.54cm. (c) Output power of the flexible-microcavity surface-emitting laser as a function of input optical- pump power. The insets show the emission spectra above threshold and the full width at half maximum (FWHM) of the lasing spectra as a function of pump power. PVK: Poly(N-vinylcarbazole). CA: Cellulose acetate. QDs: Quantum dots.


In a different demonstration, the researchers realized vertically integrated, 3D photonic circuits using a bottom-up approach. This differs considerably from the top-down approach that is widely employed in traditional semiconductor-based PICs.


It was found that use of colloidal quantum dots in a polymer host matrix as the active medium for emission, amplification, and detection has the advantage of compatibility with silicon technology and coverage of a wide spectral range.


All circuits were fabricated on a silicon-on-insulator substrate. Employing silicon for passive structures, such as waveguides, resonators, and couplers, has the additional benefit of enabling smaller-footprint


54 www.compoundsemiconductor.net August/September 2010


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213
Produced with Yudu - www.yudu.com