search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Personalisation That Performs


How Sportradar’s VAIX AI is powering betPARX’s casino growth


At G2E Las Vegas, G3 spoke with Andy Mace, Head of Casino Personalisation at Sportradar, about the company’s collaboration with betPARX, integrating VAIX AI technology to create a more engaging and data-driven player experience.


Andy, what challenge did betPARX want Sportradar to help solve?


As with all of our discovery sessions, we begin by identifying the client’s pain points. betPARX wanted to differentiate its product offering and deliver a better user experience than its competitors. Tat focus on creating a truly personalised experience formed the foundation of the project.


More broadly, this aligns with a wider industry trend: operators are competing not just on game titles but on experience quality, using AI- driven insight to strengthen retention and lifetime value.


Why was VAIX Casino AI selected as the right fit for betPARX?


It came down to experience and depth. VAIX was one of the industry’s first AI-driven personalisation engines, and its maturity gives operators a wide range of use cases. Tat combination of proven technology and flexibility made it the natural choice.


VAIX has evolved over the years, combining deep-learning and transformer models refined over nine years with Sportradar’s unparalleled betting and gaming data. Tis gives operators a scalable solution with fast time-to-market and measurable ROI.


How was VAIX integrated into the betPARX platform? Were there any operational challenges?


Tere are always technical hurdles with any integration, but betPARX 70


had an excellent partner in Playtech, which handled much of the front- end work efficiently. Te process went smoothly overall. Integration was completed via Sportradar’s single API framework, which also powers its broader iGaming and sportsbook solutions, ensuring a future-proof setup that can easily expand into new content verticals.


How quickly does the AI begin to deliver relevant recommendations once it’s live?


Our models start reacting after just one session of gameplay, though it usually takes a few sessions to reach optimal accuracy. Te system learns quickly and continuously improves as more player data becomes available. Tat ability to adapt dynamically means operators can start seeing measurable uplift in engagement within weeks, a key advantage compared to building in-house systems.


You deployed VAIX across three content carousels. How were those areas selected?


Tat was a joint decision. In the discovery phase, we worked with betPARX to identify the most valuable use cases. Te first phase focused on three core carousels where personalisation would have the greatest immediate impact. Tis modular approach mirrors Sportradar’s personalisation framework, start narrow, prove success, then expand, ensuring every personalisation initiative is tied to clear business KPIs.


Te case study showed a 200 per cent increase in unique titles played. How did the AI drive that level of discovery?


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194