This page contains a Flash digital edition of a book.
248 U


Unified Command. The process of determining overall incident strategies and tactical objectives by having all agencies, organizations, or individ- uals who have jurisdictional responsibility, and in some cases those who have functional respon- sibility at the incident, participate in the deci- sion-making process.


Unified Commanders (UC). Command level representatives from each of the primary responding agencies who present their agency’s interests as a member of a unified command team. Depending upon the scenario and incident timeline, they may be the “lead” Incident Commander or play a supporting role within the command function. The unified commanders manage their own agency’s actions and make sure all efforts are coordinated through the uni- fied command process.


Underflow Dam. Spill control tactic used to trap floating lighter-than-water materials behind the dam (specific gravity <1). Using PVC piping or hard sleeves, the dam is constructed in a manner that allows uncontaminated water to flow unob- structed under the dam while keeping the con- taminant behind the dam. Operationally, this is most effective on slow moving and relatively narrow waterways.


V


Vacuuming. A physical method of confinement by which a hazardous material is placed in a chemically-compatible container by simply vac- uuming it up. The method of vacuuming will depend upon the hazmats involved. Vacuuming is also a physical method of decontamination.


Vapor. An air dispersion of molecules in a sub- stance that is normally a liquid or solid at stan- dard temperature and pressure.


Vapor Combustion Unit. Is an air pollution con- trol device that destroys the contaminant by oxi- dation and emits carbon dioxide and water. It is usually an intermediate piece of equipment located between an enclosed ground flare and an incinerator for disposing of liquid and gaseous waste.


Vapor Recovery Unit. An air pollution device that recovers the contaminant and returns it to its original and reusable state.


GLOSSARY


Vapor Density. The weight of a pure vapor or gas compared with the weight of an equal vol- ume of dry air at the same temperature and pres- sure. The molecular weight of air is 29. If the vapor density of a gas is less than one, the mate- rial is lighter than air and may rise. If the vapor density is greater than one, the material is heav- ier than air and will collect in low or enclosed areas. Significant property for evaluating expo- sures and where vapors and gases will travel.


Vapor Dispersion. A physical method of con- finement by which water spray or fans is used to disperse or move vapors away from certain areas or materials. It is particularly effective on water- soluble materials (e.g., anhydrous ammonia), although the subsequent runoff may involve environmental trade-offs.


Vapor Pressure. The pressure exerted by the vapor within the container against the sides of a container. This pressure is temperature depend- ent; as the temperature increases, so does the vapor pressure. Consider the following three points:


1) The vapor pressure of a substance at 100°F is always higher than the vapor pressure at 68°F.


2) Vapor pressures reported in millimeters of mercury (mm Hg) are usually very low pres- sures. 760 mm Hg is equivalent to 14.7 psi. or one atmosphere. Materials with vapor pres- sures greater than 760 mm Hg are usually found as gases.


3) The lower the boiling point of a liquid, the greater vapor pressure at a given temperature.


Vapor Suppression. A physical method of con- finement to reduce or eliminate the vapors ema- nating from a spilled or released material. Operationally, it is an offensive technique used to mitigate the evolution of flammable, corrosive, or toxic vapors and reduce the surface area exposed to the atmosphere. Common examples include the use of firefighting foams and chemi- cal vapor suppressants.


Venting. The controlled release of a liquid or compressed gas to reduce the pressure and diminish the probability of an explosion. The method of venting will depend upon the nature of the hazmat.


Viscosity. Measurement of the thickness of a liq- uid and its ability to flow. High viscosity liquids, such as heavy fuels oils (i.e., #6 fuel oil), must


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268