This page contains a Flash digital edition of a book.
LEDs ♦ news digest ultraviolet range.


107 defects. This technique would add an extra step to the manufacturing process for LEDs, but it would result in higher quality, more efficient LEDs.”


More details of this research are described in the paper “Embedded voids approach for low defect density in epitaxial GaN films,” by P. Frajtag, N. A. El-Masry, N. Nepal and S. M. Bedair in Applied Physics Letters, 98, 023115 (2011); doi:10.1063/1.3540680)(published online 17 Jan 2011)


Entegris Wafer


The new technique reduces the number of defects in those films by two to three orders of magnitude, increasing the output of light by a factor of two for a given amount of power. (Image courtesy of Lukasz Tylec)


The researchers started with a GaN film that was two microns thick and embedded half of that thickness with large voids (empty spaces that were one to two microns long and 0.25 microns in diameter).


Using transmission electron and atomic force microscopy, the scientists found that defects in the film were drawn to the voids and became trapped leaving the portions of the film above the voids with far fewer defects.


Defects are slight dislocations in the crystalline structure of the GaN films. These dislocations run through the material until they reach the surface. By placing voids in the film, the researchers effectively placed a “surface” in the middle of the material, preventing the defects from travelling through the rest of the film.


The voids were embedded near the sapphire substrate, where high densities of dislocations are present.


The network of voids acts as dislocation sink or termination site for the dislocations generated at the GaN/sapphire interface.


“Without voids, the GaN films have approximately 1010 defects per square centimetre,” says Bedair, one of the researchers. “With the voids, they have


Shipper Enhances LED Manufacturing


The Ultrapak100 is designed to reduce damage and contamination to protect thin substrates used in LED manufacturing and other applications.


Entegris has introduced a wafer shipper that specifically meets the critical handling needs of compound semiconductor and thin silicon wafers.


The Ultrapak 100 mm thin wafer shipper is designed to reduce damage and contamination in order to better protect thin substrates used in LED manufacturing and other applications.


Currently, the LED industry predominantly uses shippers designed for silicon semiconductor applications. These wafer shippers are not designed for compound semiconductor or thin silicon shipment and can cause wafer damage or breakage, cross-slotting and particle generation via rotation if used in these sensitive applications.


Entegris’ latest thin wafer shipper offers several design features that help silicon and compound semiconductor manufacturers reduce these risks, including cradle strap support (upper and lower cushions) of the wafer that limits wafer rotation. This ensures reduced particle contamination, and secures the wafers in the cassette to safeguard against breakage.


The tool also has enhanced perimeter support of the substrate to reduce stress levels during impact events during transport. The ultrapure polypropylene provides a clean shipping


January / February 2011 www.compoundsemiconductor.net 53


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176