This page contains a Flash digital edition of a book.
news digest ♦ Power Electronics


However, the researchers say that calculations for piezoelectricity of GaN nanowires as a function of size were carried out in this work for the first time, and the results are clearly more promising as GaN shows a more prominent increase.


“Our calculations reveal that the increase in piezoelectric coefficient is a result of the redistribution of electrons in the nanowire surface, which leads to an increase in the strain-dependent polarisation with respect to the bulk materials,” Espinosa said.


The findings may have important implications in the field of energy harvesting as well as for fundamental science.


For energy harvesting, where piezoelectric elements are used to convert mechanical energy to electrical energy to power electronic devices, these results point to a reduction in size of the piezoelectric elements down to the nanometre scale. Energy harvesting devices built from small- diameter nanowires should in principle be able to produce more electrical energy from the same amount of mechanical energy than their bulk counterparts.


In terms of fundamental science, these results support previous conclusions that are important on the nanoscale scale. The scientists say that by tailoring the size of nanostructures, their mechanical, electrical and thermal properties can be tuned as well.


“Our focus remains on understanding the fundamental principles governing the behaviour of nanostructures as a function of their size,” say the researchers. “One of the most important issues that needs to be addressed is to obtain experimental confirmation of these results, and establish up to what size the giant piezoelectric effects remain significant.”


Espinosa and Agrawal hope their work will spur new interest in the electromechanical properties of nanostructures, both from theoretical and experimental standpoints, in order to clear the path for the design and optimisation of future nanoscale devices.


If you want to find out more about this research, see the paper, “Giant Piezoelectric Size Effects


152 www.compoundsemiconductor.net January / February 2011


in Zinc Oxide and Gallium Nitride Nanowires. A First Principles Investigation” by Ravi Agrawal and Horacio D. Espinosa published online in Nano Letters on January 11, 2011(DOI: 10.1021/ nl104004d).


Cree Launches Industry’s First Commercial SiC Power MOSFET


Destined to replace silicon in high voltage (≥ 1200V) power electronic devices, Cree’s CMF20120D delivers 1200V blocking voltage and is claimed to have the lowest switching losses in its class.


Cree, a major supplier of LEDs, has introduced what it claims is the industry’s first fully-qualified commercial silicon carbide power MOSFET.


The firm says the device establishes a new benchmark for energy efficient power switches and can enable design engineers to develop high voltage circuits with extremely fast switching speeds and ultralow switching losses.


The SiC MOSFET can be used today for solar inverters, high-voltage power supplies and power conditioning in many industrial power applications. Over the next several years, SiC power switches and diodes could also expand into motor drive control, electric vehicles and wind energy applications. The market for power semiconductors in these applications is estimated at approximately $4 billion today, reaching nearly $6 billion by 2015.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176