This page contains a Flash digital edition of a book.
LEDs  technology


with exceptionally high transmission across the interface. At close proximity the lens is also able to capture most of the emitted light, focusing this to a tight spot with high power density. Such an assembly is ideal for optical coupling to a fibre (see Figure 3(a)).


To test its efficiency, the aperture of a 2mm-diameter plastic optical fibre was aligned to the focal spot of the LED assembly. Measurements determined a coupling efficiency of 53.8 percent, the highest value reported to the best of our knowledge. fibre-coupled LED sources find uses in a diverse range of applications from optical microscopy to short-range optical communications. Apart from the integration of optics, the monolithic integration of LED chips has also been demonstrated as a viable solution for building colour-tuneable LED assemblies.


Three LEDs chips of the primary colours, cut into truncated pyramidal geometries, were vertically stacked on top of each other in the order of decreasing wavelength from the bottom to the top, as illustrated in Figure 3(b). The inclined sidewalls are mirror-coated to suppress lateral leakage.


With this stacking arrangement, light emitted from chips at the bottom of the stack emits through the upper chips; the top blue LED chip serves as the output window. As the optical paths of the three chips overlap with each other, their colours are naturally mixed along the optical path without requiring additional optics. By individually controlling the intensities of the three colours via bias current, a wide range of colours can be produced with excellent homogeneity and performance (see Figure 4 for examples).


Such stacked devices are obviously useful for building high-resolution LED display panels. However, they are also excellent candidates as plain white light LEDs. Being free of phosphor, the stacked LEDs emit white light with high efficiency, excellent homogeneity, high colour- rendering index and long-term stability; all of this is achieved without colour-conversion losses.


So let’s get moving and get in shape! With smart tweaks in design, extended functionalities and enhanced efficiencies can be achieved with amazing results, without the need for additional components.


© 2011 Angel Business Communications. Table 1. Light extraction efficiencies of LED chips with different geometries


Further reading X.H. Wang et al. Journal of Vacuum Science and Technology B 27 2048 (2009) X.H. Wang et al. Journal of Applied Physics 10 023110 (2010) W.Y. Fu et al. IEEE Photonics Technology Letters 21 1078 (2009) L. Zhu et al. IEEE Photonics Technology Letters 22 513 (2010) K.N. Hui et al. OSA Optics Express 17 9873 (2009)


January / February 2011 www.compoundsemiconductor.net 27


With this stacking arrangement, light emitted from chips at the bottom of the stack emits


through the upper chips; the top blue LED chip serves as the output window. As the optical paths of the three chips overlap with each


other, their colors are naturally mixed along the optical path without requiring additional optics


Figure 4. Wide range of colors emitted by a stacked LED


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176