This page contains a Flash digital edition of a book.
detectors  technology


Extreme ultraviolet imaging with hybrid AlGaN arrays


Silicon extreme ultraviolet detector arrays require non-standard methods to be prevented from receiving longer wavelength radiation, e.g. by using multiple filters. Switching to AlGaN equivalents increases robustness and eliminates the need to block out visible and infrared light, which in turn boosts detector performance, say IMEC’s Pawel Malinowski, Kyriaki Minoglou and Piet De Moor.


A


t first glance, the fields of solar astronomy and silicon chip manufacture are poles apart. But they do have one thing in common – the need for efficient and reliable imaging of extreme ultraviolet (EUV) radiation, which spans the range 10-120 nm.


In solar physics, there is tremendous interest in phenomena occurring on the Sun’s surface (photosphere) and in its atmosphere (chromosphere and corona), such as coronal mass ejections and flares that cause staggering amounts of radiation to be emitted towards the Earth. Such processes occur at extremely high energies, so very short wavelength detectors are needed to observe what is taking place.


Meanwhile, the silicon industry is continuing its never- ending goal of shrinking transistor sizes by starting to develop lithographic processes involving EUV patterning. This requires detectors sensitive at these wavelengths, which can aid efforts to find and refine techniques for controlling the properties of the UV beam. Solar scientists and silicon engineers can use existing silicon devices for


the EUV detection needs. But greater performance is possible by turning to detectors based on GaN, which have an inherently simpler system design and are more robust to UV radiation.


Silicon’s weaknesses One of the biggest advantages of using silicon to build any device is that this material and its related process technology are mature, and consequently well understood. However, its bandgap of 1.12 eV means that it absorbs not only ultraviolet radiation, but the entire visible spectrum too, plus infrared radiation up to around 1100nm (see Figure 1). This makes silicon the perfect material for the most common digital cameras and advanced imagers operating in the visible part of the spectrum. But if silicon is employed as the active material for detecting ultraviolet radiation, its sensitivity to the longer wavelengths must be taken into account.


Image Courtesy of


In solar science this is important considering the fact that the solar spectrum is several orders of magnitude more intense in the EUV than in the visible range. In practice,


NASA/SDO and the AIA, EVE, and


HMI science teams. January / February 2011 www.compoundsemiconductor.net 29


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176