This page contains a Flash digital edition of a book.
technology  IR microscopy


Figure 6 The temperature of the junction was monitored with increasing DC power to the diode and compared with a reading from miniature (50 µm diameter) thermocouple bonded onto the package next to the diode


microscope and any radiation in the 2 to 5 µm band emitted by the LED will be seen as weak, out-of-focus background radiation. Thermal mapping of the front-face of the LED will provide an improved measurement of the maximum junction temperature and will assist in identifying hotspots and therefore potential failure points.


Our tool also outperforms the conventional IR microscope in delivering a more accurate temperature profile of a MEMS micro-heater. While conventional IR measurements mistakenly record lower temperatures on both the gold metal heater and the optically transparent silicon dioxide layer, our technique offers a more realistic thermal profile, with an exponential fall-off in temperature recorded from the heater element to the cooler region of the device.


Validation of the measurement (Figure 7) was carried out by knowing the thermal coefficient of the resistor heater. This enabled plotting the average temperature of the heater and comparing this with the micro-particle sensor measurement (Figure 8) at a single point on the heater and over a range of DC input powers. These measurements have enabled us to make more accurate thermal maps of the sensor region of MEMS devices used as high performance gas sensors.


The metal surface and delicate nature of the heated membrane precludes Raman thermography and thermal probing using a miniature thermocouple. We have made similar measurements to assist in the optimisation of thermal heaters used in electron microscopy. We believe this work will pioneer the way forward in the


Figure 8: Comparison between micro-particle at a single point and electrical measurement on a MEMS device


development of pseudo-contactless micro-sensors which can be positioned and used to scan across the surface of a structure to enable 2D temperature mapping. The sensors described are already much smaller than miniature thermocouples, which inherit the thermal mass of external connections to measurement equipment and the problems of attachment to the device. The essence of the technique may enable the development of moveable nano-scale thermal sensors to temperature probe the coming generations of nano-scale devices.


 The authors acknowledge EPSRC (EP/C511085/1) and emda for partially funding this work. They also thank many organisations for samples, including Bristol, Sheffield, Cambridge Universities ,e2v (Lincoln), Silson Ltd, and the National Physical Laboratory (NPL).


© 2011 Angel Business Communications. Permission required.


Further reading P.W Webb IEE Proc, 138, 390 (1981) C. H. Oxley, et al SSE, 54 63 (2010) C. H. Oxley et al KTN workshop on nanotechnology in European Semiconductor Conference in Cardiff, 2009. R. Hopper et al Measurement and Science Technology 21 045107 (2010)


36 www.compoundsemiconductor.net January / February 2011


Figure 7: Comparison between micro-particle and conventional IR measurement on a MEMS device


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176