This page contains a Flash digital edition of a book.
IR microscopy  technology


Probe propels IR thermal microscopy to a new level


Adding a tiny probe to an IR microscope improves its temperature measurement capability, in turn giving new insights into the local heating profile of HEMTs and LEDs, according to a UK team comprising Chris Oxley, Richard Hopper, Dominic Prime, Mark Leaper and Gwynne Evans from De Montfort University and Andrew Levick from the National Physical Laboratory.


D


evices are being driven at higher and higher power densities. Cranking up the current in


LEDs increases their brightness, making them suitable for deployment in car headlights, projectors and general illumination. Meanwhile, the emergence of RF transistors made from GaN rather than GaAs has increased the W/mm2 figure by an order of magnitude.


Creating these new chips - which can extract far more performance from the same-sized footprint - is helping to drive the compound semiconductor industry forward. Customers incorporating these chips into their products are able to buy fewer of them, making whatever they build


not only cheaper to produce, but also simpler, smaller, lighter and potentially more reliable.


It is very rare to enjoy gains without paying a penalty somewhere, and in this case it is the issues relating to a hotter device. Temperatures tend to vary across the chip, creating localised hot spots that are seen as a common cause of device failure. Exposing their location and recording the local temperature offers an important first step on the road to improving the thermal management of the chip and ultimately increasing its reliability. Raman thermography offers one well-developed approach to uncovering local temperatures on a chip. This technique


Figure 1: The Quantum Focus IR microscope has a 256 x 256 pixel InSb detector array cooled to 77 K to detect radiation in the 2-5 µm wavelength band. Using a 25x objective the spatial resolution is around 3 µm over a field of view 230 µm x 230 µm. The temperature sensitivity is 0.1 °C and it has a temperature range of 300 °C. The instrument has been provided with the capability of DC and RF probing, enabling electrical bias and electrical measurements to be made during thermal characterisation of the device


January / February 2011 www.compoundsemiconductor.net 33


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176