This page contains a Flash digital edition of a book.
news digest ♦ Novel Devices


energy of charged excitons was compared with that of a quantum well structure of the same type of material, which was previously known to be ~1 meV, it was found to have a value more than 10 times larger.


This increase in many-body energy is due to a remarkable increase in the Coulomb force between the many-particle system which results from packing electrons in a 3-dimensional nano-space.


The researchers say that these results show, for the first time, the effect of confinement of a multi- electron state in a nano-space. From the viewpoint of applied technology, because electron correlation is also the source of diverse types of non-linear effect devices such as optical switching devices and lasers, if interaction intensity can be controlled using nanostructures, this can be expected to lead to the development of optical semiconductor devices which enable stable drive with low power consumption.


Further details of these results can be seen in the American scientific journal, Physical Review B, Vol. 82, Issue 20, Page 201301(R) (Nov. 15, 2010, DOI: 10.1103/PhysRevB.82.201301)


The paper is entitled “Energy renormalization of exciton complexes in GaAs quantum dots”, by M. Abbarchi et al.


Imec & Holst Develop NO2 Sensor Based on InAs Nanowires


The two research organizations have developed a vertically-grown InAs sensor for measuring ultra-low concentrations of NO2 which is an environmental pollutant.


Imec and Holst Centre have developed an innovative sensor for measuring ultra-low concentrations of NO2. Such sensors are important for applications that monitor environmental pollution resulting from traffic, and in general, from all combustion motors.


The sensor’s active components are arrays of vertically grown InAs nanowires. A typical sensor


174 www.compoundsemiconductor.net January / February 2011


Figure gassensor: Artist impression of the NO2 gas sensor, showing the contacts and InAs nanowires.


The semiconductor nanowires are contacted ohmically using an air bridge construction (see picture). This construction has as advantage that it leaves the nanowire surface free for gas adsorption. Because of the small bandgap of InAs, it’s fairly easy to fabricate these ohmic contacts. The sensor can be reset, simply by applying a stronger current.


The sensor boasts several breakthroughs in nanowire technology. A key characteristic is that the vertical nanowires are electrically contacted in the locations on the substrate where they are grown. In other, comparable nanowire sensors, the nanowires have to be placed on the substrate after being grown elsewhere. Another major benefit of these sensing nanowires is that they function without heating, making them much more power-efficient


The new gas sensor has been developed in Holst Centre’s program for ultra-low-power sensors. As the next step, the researchers will increase the sensitivity of the sensor, as well as its detection selectivity. One goal is, for example, to make a sensor that can distinguish between NO2 and NO. Also, new manufacturing techniques will be investigated, with the aim to use cost-effective


would contain 500 such nanowires, and will be sensitive to NO2 concentrations of fewer than 100ppb at room temperature.


The sensor’s nanowires are about 3 microns in length and 50-100nm wide. They are made from InAs, which is well-suited for gas sensing, because it has an electron accumulation layer at the surface, making it sensitive to accumulated charges. Gas molecules adsorb onto the nanowires, changing the current that is flowing through the nanowires.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176