This page contains a Flash digital edition of a book.
news digest ♦ Lasers


JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.


Terahertz radiation, which falls between the radio and optical bands of the electromagnetic spectrum, penetrates materials such as clothing and plastic but can be used to detect many substances that have unique absorption characteristics at these wavelengths. Terahertz systems are challenging to build because they require a blend of electronic and optical methods.


producing spikes in the electric field. Making the electric field oscillate rapidly by applying a radiofrequency signal ensures that electrons generated by the light cannot react quickly enough to cancel the electric field.


The result is a uniform electric field over a large area, enabling the use of a large laser beam spot size and enhancing system efficiency. Significantly, users can boost terahertz power by raising the optical power without damaging the semiconductor, unlike with previous systems operating even at a low power.


Furthermore, the new technique does not require a microscopically patterned sample or high-voltage electronics. The system produces a peak terahertz field (20 volts per centimeter for an input power of 160 milliwatts) comparable to that of other methods.


JILA instrument for generating terahertz radiation. Ultrafast pulses of near-infrared laser light enter through the lens on the left, striking a semiconductor wafer studded with electrode (see the transparent square barely visible under the white box connected to orange wires) bathed in an oscillating electric field. The light dislodges electrons, which accelerate in the electric field and emit waves of terahertz radiation. On the right is a close-up of the electron source. (Credit: Zhang/ JILA)


The JILA technology is a new twist on a common terahertz source; a semiconductor surface patterned with metal electrodes and excited by ultrafast laser pulses. An electric field is applied across the semiconductor. At the same time, near- infrared pulses lasting about 70 femtoseconds (quadrillionths of a second), at a rate of 89 million times per second, dislodge electrons from the semiconductor. The electrons accelerate in the electric field and emit waves of terahertz radiation.


JILA says its innovations eliminate two known problems with these devices. Adding a layer of silicon oxide insulation between the gallium arsenide (GaAs) semiconductor and the gold electrodes prevents electrons from becoming trapped in semiconductor crystal defects and


110 www.compoundsemiconductor.net January / February 2011


While there are a number of different ways to generate terahertz radiation, systems using ultrafast lasers and semiconductors are commercially important because they offer an unusual combination of broad frequency range, high frequencies, and high intensity output.


NIST has applied for a provisional patent on the new technology. The system currently uses a large laser based on a titanium-doped sapphire crystal but could be made more compact by use of a different semiconductor and a smaller fiber laser, says Steven Cundiff, a NIST physicist.


Further details of this work are published in the paper “Contactless photoconductive terahertz generation”,by H. Zhang J.K. Wahlstrand, S.B. Choi and S.T. Cundiff, Optics Letters, Jan. 15, 2011.


IPG Appoints Trevor Ness as Vice President of Asian Operations


IPG is strengthening its commitment to the growing Asian market which represented 42% of the firm’s total revenue in the first three quarters of 2010.


IPG Photonics Corporation, a global leader in high- performance fiber lasers for diverse applications, has strengthened its commitment to Asia with the


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176