This page contains a Flash digital edition of a book.
news digest ♦ Power Electronics


The SiC MIDSJT devices developed in this program will be used to construct motor control power modules for direct integration with Venus exploration rovers.


“We are pleased with the confidence expressed by NASA in our high temperature SiC device solutions. This project will enable GeneSiC to develop industry-leading SiC-based power management technologies through its innovative device and packaging solutions” said Siddarth Sundaresan, GeneSiC’s Director of Technology.


“The SiC MIDSJT devices targeted in this program will allow Kilowatt-level power to be handled with digital precision at temperatures as high as 500 °C. In addition to outer space applications, this novel technology has the potential to revolutionize critical aerospace and geothermal oil drilling hardware requiring ambient temperatures in excess of 200 °C. These application areas are currently limited by the poor high-temperature performance of contemporary Silicon and even SiC based device technologies such as JFETs and MOSFETs” he added.


GeneSiC continues to rapidly enhance the equipment and personnel infrastructure at its Dulles, Virginia facility. The company is aggressively hiring personnel experienced in compound semiconductor device fabrication, semiconductor testing and detector designs.


GeneSiC Semiconductor develops Silicon Carbide (SiC) based semiconductor devices for high temperature, radiation, and power grid applications. This includes development of rectifiers, FETs, bipolar devices as well as particle & photonic detectors. GeneSiC has access to an extensive suite of semiconductor design, fabrication, characterization and testing facilities for such devices.


GeneSiC capitalizes on its core competency in device and process design to develop the best possible SiC devices for its customers. The company distinguishes itself by providing high quality products that are specifically tuned to each customer’s requirements. GeneSiC has prime/sub-contracts from major US Government agencies including ARPA-E, US Dept of Energy, Navy, DARPA, Dept of Homeland Security, Dept of Commerce and other departments within the US


162 www.compoundsemiconductor.net January / February 2011 Dept. of Defense.


Cree Reveals 650V Silicon Carbide Schottky Diode Family


The firm’s new product line of Z-Rec 650V Junction Barrier Schottky (JBS) diodes should improve advanced high-efficiency data center power supply designs.


Targeting the latest data center power supply requirements, Cree, a market leader in silicon carbide power devices, is introducing its new line of Z-Rec 650V Junction Barrier Schottky (JBS) diodes.


The new JBS diodes provide blocking voltage to 650V to accommodate recent changes in data center power architecture that industry consultants estimate will result in energy efficiency gains of up to 5 percent. Because data centers account for nearly 10 percent of the world’s annual consumption of electrical power, any efficiency gain represents a significant opportunity to reduce overall power consumption.


Conventional switch-mode power supplies typically have an input voltage range of 90V – 264V, supporting various AC input sources worldwide. In existing data center power architectures, 3-phase/480V power is supplied from the local utility. This 3 phase/480V power is converted to 3 phase/208V by means of a power transformer and then further conditioned to provide input power to the server power supply. This conversion step reduces overall efficiency due to transformer losses.


Recent trends in data center power architecture call for the elimination of the 480V to 208V conversion to boost overall data center efficiency. Instead of


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176