Solar ♦ news digest
Semiconductors with wide band gaps respond to shorter wavelengths with higher energies (lower left). A semiconductor with an intermediate band has multiple band gaps and can respond to a range of energies (lower right).
Now Wladek Walukiewicz, who leads the Solar Energy Materials Research Group at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and his colleagues have demonstrated a solar cell which responds to virtually the entire solar spectrum. This cell is different as it can be made using one of the semiconductor industry’s most common manufacturing techniques.
“Since no one material is sensitive to all wavelengths, the underlying principle of a successful full-spectrum solar cell is to combine different semiconductors with different energy gaps,” says Walukiewicz.
One way to combine different band gaps is to stack layers of different semiconductors and wire them in series. This is the principle of current high-efficiency solar cell technology that uses three different semiconductor alloys with different energy gaps.
In 2002, Walukiewicz and Kin Man Yu of Berkeley Lab’s Materials Sciences Division (MSD) found that by adjusting the amounts of indium and gallium in the same alloy, indium gallium nitride (InGaN), each different mixture in effect became a different kind of semiconductor that responded to different wavelengths. By stacking several of the crystalline layers, all closely matched but with different indium content, they made a photovoltaic device that was sensitive to the full solar spectrum.
Kin Man Yu and Wladek Walukiewicz have long been leaders in multiband solar cell technology
However, says Walukiewicz, “Even when the different layers are well matched, these structures are still complex and so is the process of manufacturing them. Another way to make a full- spectrum cell is to make a single alloy with more than one band gap.”
In 2004 Walukiewicz and Yu made an alloy of highly mismatched semiconductors based on a common alloy of zinc zinc (plus manganese) and tellurium. By doping this alloy with oxygen, they added a third distinct energy band between the existing two, thus creating three different band gaps that spanned the solar spectrum. Unfortunately, says Walukiewicz, “to manufacture this alloy is complex and time-consuming, and these solar cells are also expensive to produce in quantity.”
The new solar cell material developed by Berkeley Lab’s MSD, RoseStreet Labs Energy and Sumika Electronics Materials is another multiband semiconductor made from a highly mismatched alloy.
In this case the alloy is gallium arsenide nitride, similar in composition to one of the most familiar semiconductors, gallium arsenide. By replacing some of the arsenic atoms with nitrogen, a third, intermediate energy band is created. The good news is that the alloy can be made by metalorganic chemical vapour deposition (MOCVD), one of the most common methods of fabricating compound semiconductors.
Band gaps arise because semiconductors are insulators at a temperature of absolute zero but inch closer to conductivity as they warm up. To conduct electricity, some of the electrons normally bound to atoms (those in the valence band) must gain enough energy to flow freely – that is, move into the conduction band. The band gap is the energy needed to do this.
When an electron moves into the conduction band it leaves behind a “hole” in the valence band, which also carries charge, just as the electrons in the conduction band; holes are positive instead of negative.
A large band gap means high energy, and thus a January / February 2011
www.compoundsemiconductor.net 121
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176