This page contains a Flash digital edition of a book.
news digest ♦ Lasers


980nm VCSELs Exhibit High Performance at Elevated Temperatures


German researchers have demonstrated that the lasers, produced by IQE, are capable of operating at 25Gbit/s at elevated temperatures. This makes them ideal for very short optical links within high- performance computers.


A team of researchers from the Technical University of Berlin has published work in Applied Physics Journal demonstrating record data transmission rates from an oxide confined 980nm Vertical Cavity Surface Emitting Laser (VCSEL) operating at 85°C.


The VCSEL devices fabricated on wafers produced using Metal Organic Chemical Vapour Deposition (MOCVD), are capable of operating at 25Gbit/s at elevated temperatures, making them ideal for very short optical links within high-performance computers.


“Since temperatures inside computers are as high as 85 °C, or even higher, good temperature stability is indispensable for robust, inexpensive optical links,” says Dieter Bimberg, head of the research team in Berlin.


Most short-reach optical links and local and storage-area networks currently operate at a wavelength of 850nm but Bimberg believes there is a strong case for 980 nm sources in all these applications.


“980 nm has the crucial advantage of transparency of the GaAs substrate, so one can easily realise bottom-emitting devices, increasing and simplifying packaging density. This is very important, for example, in the case of a large number of VCSELs for parallel optical links.”


The epitaxial structure contained 24 pairs of Al0.12Ga0.88As and Al0.90Ga0.10As layers for the bottom mirror, and a further 37 pairs for the top mirror. Sandwiched between these mirrors is an active region with five compressively strained 4.2nm thick In0.21Ga0.79As quantum wells interlaced with 6nm thick GaAs0.88P 0.12tensile strained barriers.


Output from a 10 micron diameter oxide aperture 106 www.compoundsemiconductor.net January / February 2011


VCSEL is 4.3mW at 20 °C and 2.6 mW at 85°C. This relatively small reduction in power stems from an intentional red-shift detuning of 15 nm between the quantum well gain peak and the cavity resonance. The devices have bit error rates at 25 Gbit/s of less than 10-12.


Future targets for the team are to speed the 980 nm VCSELs to 40Gbit/s and maintain this rate at 100°C.


Oclaro VCSELs Power Symmetricom’s First Miniature Atomic Clock


The 795 nm single-mode VCSELs signify a new direction in the industry by enabling the world’s first miniature atomic clocks which are available in volume.


Oclaro, a provider of innovative optical communications and laser solutions, has developed single-mode Vertical Cavity Surface Emitting Lasers (VCSEL) for atomic clocks.


These lasers are being used by Symmetricom, a world leader in the design and manufacturing of frequency standards, in its SA.35m miniaturized rubidium atomic clock. Featuring ultra-high stability, low noise and a wavelength of 795 nm, the Oclaro single-mode VCSELs signify a new direction in the industry by enabling the world’s first miniature atomic clock available in volume.


While atomic clocks are recognized as extremely precise time-keeping devices, they have been limited in size and reliability due to their traditional gas lamp. By replacing the gas lamp with a laser, manufacturers such as Symmetricom can significantly improve the reliability and power consumption of atomic clocks and also begin targeting applications that require smaller devices.


“A core part of Oclaro’s strategy is to expand into adjacent markets where we can leverage our optical technology and solutions to deliver value for customers,” said Yves LeMaitre, Executive VP and Division Manager at Oclaro. “We are pleased to extend our proven laser technology into atomic clock devices which enable Symmetricom


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176