This page contains a Flash digital edition of a book.
industry  LEDs


silicon. Now the biggest barrier to high-volume, profitable production of this class of device is a sufficiently high yield. At Aixtron of Aachen, Germany, we are addressing this issue with the launch of our AIX G5+, an MOCVD system dedicated to the growth of LEDs on 200 mm silicon substrates (see Figure 1).


Requirements for high-yield epitaxy on large area substrates of silicon, or sapphire for that matter, include optimisation of the reactor temperature profile and precursor delivery. The AIX G5+ delivers on both fronts, thanks to an optimized RF heating coil and a novel gas inlet, which provides excellent gas flow stability and uniformity on the full batch area of 5 x 200 mm wafers.


The challenge of delivering high yield LED manufacturing is far tougher on silicon substrates than it is on those made from sapphire: In addition to uniform gas flow distribution and optimised temperature management, it requires minimisation and management of silicon wafer bow. If the wafer deforms, this leads to undesirable non-uniformities in emission wavelength. To combat this, MOCVD processes must be developed that produce satisfactory chip yields. In addition to wavelength uniformity, the wafer must be flat when cooled to room temperature, to enable high-yield in various processing steps, such as lithography.


Origins of bow Wafers start to bow when they are heated up to typical MOCVD process temperatures. This heating comes from the reactor’s wafer carrier, which heats the bottom of the substrate. In comparison, the wafer’s top surface is exposed to the process chamber, so it is at a lower temperature. The vertical thermal gradient that results across the wafer causes its expansion to be greater at its top than at its bottom. This leads to a spherical bow, which is more pronounced for thinner, larger wafers. Consequently, deposition on 200 mm substrates is particularly challenging.


The only way to address this heating-related bow is to control the temperature of the reactor wall facing the top surface of the wafer. This feature is present on the AIX G5+, which accommodates a warm reactor ceiling that lowers the bow of a standard thickness 200 mm silicon wafer by up to about 30 percent compared to other reactors.


Bowing issues are exacerbated by differences in the thermal expansion coefficients of silicon and the nitride layers. During epilayer deposition, wafer bow evolves according to the strain characteristics and the thickness of the layers that are deposited. If the strain is not managed properly, the resulting bow leads to non-uniform wavelength characteristics, layer cracking, and even wafer breakage.


To prevent this from happening, strain management techniques are applied, such as the introduction of interlayers that have a strain that counterbalances that associated with the nitride layers. These strain reduction techniques can minimise bow during different growth steps, in order to prevent layer cracking, and ultimately they can lead to the formation of a flat wafer after growth and cool-down.


If these techniques are applied successfully, wafer bow is minimal. For example, it is possible to produce a 200 mm LED epiwafer on silicon with a bow of less than 10 µm (see Figure 2). The wafers, which have been grown in a reactor featuring in-situ curvature


measurement tools to monitor any deformations, are crack-free.


Although it is possible to minimise wafer bow with the techniques outlined above, it is impossible to eliminate it during the deposition process. This means that for the growth of the multi- quantum well structure, the key region within the device, it is critical to provide a uniform wafer temperature at a given wafer bow. It is possible to do this with the AIX G5+, because the wafer recesses can be customised to account for the thickness of the structure and the customer’s proprietary strain management techniques.


The design of the reactor determines whether a wafer will bow with rotational symmetry (to the form of a bowl) or warp (resembling a potato chip). If the wafer bows to the form of a bowl, the distance between the wafer’s edge and its carrier is the same along its entire circumference. This means that the temperature has a symmetrical profile and can be accounted for by recess designs. Adopting this approach is not possible if the wafer warps, because variations in temperature over its surface are much more complex.


It is only possible to realise rotational symmetry of the bow in either single wafer reactors, or in ‘Planetary Reactors’, such as the AIX G5+, where every wafer experiences an environment similar to that found in a single-wafer reactor. The benefits of symmetry extend beyond an increase in epitaxial binning yield, and include fewer handling issues and reduced yield loss in subsequent wafer processing steps. An indication of the yields produced by five different wafer recess designs in an Aixtron AIX G5+ is presented in Figure 3. Variations in design lead to variations in wavelength distributions, and for the structure formed in this particular run, the best matched design delivers a yield of 95 percent in a 5 nm bin (no edge exclusion). Extend the bin to 10 nm, and yield rockets to 99.97 percent.


Substrate thickness


Curvature of the wafer depends on several factors. It is proportional to thickness of the film and its stress, and it is inversely proportional to the square of wafer thickness (Stoney’s equation). So, in addition to using strain management layers and an optimised reactor to minimise bow, engineers can try to combine thin epilayers with a thick substrate. Thin layers are advantageous for other reasons – they shorten growth times and the cost of the ingredients that are required to make the epiwafers. However, it is very tricky to trim the thickest part of any


Figure 1.An Aixtron AIX G5+ Planetary reactor,designed for the growth of five 200 mm GaN-on-silicon epiwafers


March 2013 www.compoundsemiconductor.net 41


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143