search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Living on the edge 231


mean number of detected species from all locations at each distance from the edge. We determined the relationship be- tween distance from the forest edge, environmental condi- tions and detections using generalized linear mixed models (GLMMs) fitted with the R package glmmTMB (Brooks et al., 2017). As our data collection followed a nested sam- pling design, we included location and transect ID as random intercepts in all models to account for non- independence between samples. We summarized environmental predictors for each loca-


tion.Wecalculated mean temperature and light intensity for the entire sampling period (including night-time and day- time temperatures). We also calculated the daily mean, maximum and minimum temperature and light intensity at each sampling location. We summarized forest structure for each plot into the following variables: mean tree height, mean bole height, mean diameter at breast height, mean crown area, mean connectivity and number of trees per plot. The environmental variables used in the models are provided in Supplementary Table 1, and R-code used to run the models is provided in Supplementary Material 1. We first tested for the effect of distance from the edge on microclimate and forest structure. The GLMMs for micro- climate variables also included the day of the year and hour of the day as random intercepts. We next tested for signifi- cant associations between detection events and distance from the forest edge using Pearson’s χ2 tests. We then test- ed the effects of microclimate and forest structure variables on overall mammal detections using a Poisson generaliz- ed linear model with a log link function fitted with the R package MASS (Venables & Ripley, 2002). We used a correlation matrix to check for co-linearity amongst pre- dictor variables. For those with a correlation coefficient .0.7, we selected only one to be included in the model. We determined which combination of variables produced the best model performance based on the Akaike infor- mation criterion (AIC) using automated model selection with the R package MuMIn (BartoĊ„, 2020). Finally, we tested for the effects of microclimate and for-


est structure variables on the occurrence of each mam- mal order by fitting a negative binomial GLMM with glmmTMB. Order was included as a random intercept. As in the GLMM, we first selected independent variables using a correlation matrix and used automated model selection with MuMIn to select the best combination of variables based on the model AIC.


Results Edge effects on forest structure and microclimate


Forest structure Tree height increased significantly with increased distance from the forest edge (P,0.05; Table 1,


Oryx, 2024, 58(2), 228–239 © The Author(s), 2023. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605323000212


TABLE 1 Coefficient estimates for the generalized linear mixed model with a Gaussian distribution testing the effects of distance fromthe forest edge on forest structure variables (N = 217 trees) at Aras Napal, Indonesia (Fig. 1). AIC, Akaike information criterion.


Dependent variables


Tree height ± SE (m)


Distance from edge (m)


Intercept


Random effects1 σ2


τ00 AIC


Bole height ± SE (m)


Diameter at breast height ± SE (cm)


0.002** ± 0.00 0.002*** ± 0.00 −0.001 ± 0.00 17.72*** ± 1.05


65.93 1.13


1,544.51


33.38 0.20


8.45*** ± 0.68 33.25*** ± 1.50 184.94


0.00 1,397.02


*P,0.1; **P,0.05; ***P,0.01. 1σ2, residual variance; τ00, random intercept variance.


1,764.32


Tree basal area ± SE (cm2)


0.00 ± 0.00


0.10*** ± 0.01 0.01


0.00 −382.04


Tree height:diameter at breast height ratio ± SE


0.006*** ± 0.00 55.53*** ± 1.83 267.97


0.00 1,844.04


Crown area ± SE (m2)


−0.0005 ± 0.00 Canopy


connectivity ± SE (%) 0.001 ± 0.00


45.29*** ± 4.12 43.41*** ± 3.03 1,356.24 2,192.69


0.00


538.29 9.87


1,996.05


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140