Estimating conservation area coverage 197
FIG. 2 (a) Sample of countries (national sampling units) and administrative units (sub-national sampling units) that meet 10% of targets selected based on 1,000 Marxan runs and selecting the result with the smallest number of sampling units, most even spread across the continents and with sampling units with the highest mean selection frequency. (b) Selection frequency scores from Marxan showing the number of times each sampling unit was selected across the 1,000 runs used to identify the sample.
continents. All of the Stage 1 and Stage 2 Marxan outputs met all of the 89 feature coverage targets (Table 1, Supple- mentary Table 4), whereas the Stage 1 random sets failed to meet a mean of 15.7 ± SD 4.0 targets and the Stage 2 random sets failed to meet a mean of 16.5 ± SD 3.6 targets. Using the best Marxan output would require collecting
protected area data from 25 countries and across 42 Stage 1 (national and sub-national) sampling units. In compar- ison, the Stage 1 random sets of sampling units covered a mean of 64.3 ± SD 7.4 countries (Supplementary Fig. 1) and 152.9 ± SD 20.6 national and sub-national sampling units. The Stage 2 random sets of sampling units covered a mean of 162.1 ± SD 4.9 countries (Supplementary Fig. 2) and 514.1 ± SD 10.3 national and sub-national sampling units.
The publicly available World Database of Protected
Areas data showed that 15.3% of the terrestrial realm is under protection compared to a mean of 15.3 ± SD 2.2% for the Stage 1 Marxan outputs and a mean of 16.0 ± SD 0.3% for the Stage 2 Marxan outputs. This compares to a mean area under protection for the Stage 1 random sets of sampling units of 15.2 ± SD 2.5% and for the Stage 2 ran- dom sets of sampling units of 15.2 ± SD 0.572%.
Discussion Choosing the factors and features
In this study we outline a framework for producing more accurate estimates of progress towards global conservation area targets, identifying a sample of countries and grid squares that are representative of the factors that shape total conservation area network extent and patterns of glo- bal biodiversity (Fig. 1). There is an established literature on the factors that shape global biodiversity patterns, so we can be confident that our final sample is representative at this global scale (Gaston & Spicer, 2004). The literature on con- servation area establishment factors is less well established, although we know that demographic, economic and govern- ance factors are important (Mascia et al., 2014; Kroner et al., 2019), so differing social and socio-economic conditions will result in conservation area networks with differing extents (Bohn & Deacon, 2000). More specifically, previous studies have shown conservation area coverage is influenced by human population density and proxies of agricultural op- portunity cost such as elevation and land cover (Loucks et al., 2008; Joppa & Pfaff, 2009) and the link between
Oryx, 2024, 58(2), 192–201 © The Author(s), 2023. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605323000625
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140