search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Estimating conservation area coverage 195


TABLE 1 Details of how we defined the features used in the analysis and their data sources. Factor


Features Biomes Elevation 16 biomes


Five features: 0 , 300 m, 300 , 800 m, 800 , 1400 m, 1400, 2000 m, $ 2000 m


Government effectiveness Four features: 0, 25%, 25 , 50%, 50 ,75%, 75, 100% Income (per capita)


Islands & continents Land cover


Latitude


Population density Realms


Sub-regions


Four features: low-income, lower-middle-income, upper-middle-income, high-income countries


Five categories: , 1,000 km2, 1,000 ,10,000 km2, 10,000, 100,000 km2, 100,000, 1,000,000 km2, ‘Continent’ ($ 1,000,000 km2) 12 land-cover types


Seven features: five 20° bands; two 40° bands at the poles to avoid over-representation of these smaller regions


Five features using a logarithmic scale: 0 , 1, 1, 10, 10, 100, 100 , 1000, $ 1000 people per km2 Eight realms 22 sub-regions


and producing a near-optimal portfolio each time. Marxan then produces two key outputs: the ‘best’ output, which is the portfolio from the run with the lowest cost, and the ‘selection frequency’ output, which counts the number of times each sampling unit appears in each of the portfolios. Sampling units with high selection scores are always needed to meet the targets; lower-scoring sampling units can be swapped with similar sampling units without affecting target attainment (Ball et al., 2009). For Stage 1 we derived the sampling units from the Data-


base of GlobalAdministrativeAreas (GADM, 2018)thatcom- prised countries or nations with an area ,1,000,000 km2 or the highest sub-national administrative-level polygons for larger countries (e.g. states, provinces, etc., which are classified as L1 in the database and referred to as ‘sub- national sampling units’ hereafter). We took this approach because larger nations tend to have sub-national conserva- tion agencies and legislation, so we wanted to minimize the number of these sub-national administrative units


UNPD (2013)


Olson et al. (2001) UNSD (2019)


selected to avoid having to collate data from a large number of expert groups. We followed established practice for reporting terrestrial coverage statistics by excluding Antarc- tica from our analyses (Butchart et al., 2015). We based the Stage 2 sampling units on a global set of 100 × 100 km grid squares created in QGIS 3 (QGIS, 2019). We then clipped this global grid layer with the national and sub-national sampling units used in Stage 1 to produce the final sampling unit layer. We used the CLUZ plugin (Smith, 2019) for QGIS to im-


port the feature raster layers, calculate the area of each fea- ture in each sampling unit and run Marxan. To ensure the sampling units selected in Stages 1 and 2 were representative of the terrestrial realm, we used Marxan to identify sam- pling units that, when combined, met the same per cent of total extent target for every feature.We carried out a sensitiv- ity analysis to select this target based on identifying a good compromise between sampling a sufficient proportion of the planet to produce a robust estimate of conservation area


TABLE 2 Details of the factors used in the analysis that are likely to shape total conservation area network extent and patterns of global biodiversity, the extent of the feature with the smallest and largest area for each factor in the terrestrial realm and the per factor mean per cent coverage of each feature identified in the Stage 1 and Stage 2 best portfolios.


Factor Biomes


Elevation


Islands & continents Land cover Latitude


Population density Realms


Sub-regions


Number of features


16 5


Government effectiveness 4 Income


4 5


12 7 5 9


22


Global area of feature with smallest extent (%)


0.24 5.38


17.34 10.66 0.36 0.01 0.16 0.79


, 0.01 , 0.01


Global area of feature with largest extent (%)


20.67 41.24 35.99 44.91 94.23 19.41 23.74 39.82 38.95 15.95


Stage 1 mean of % of each feature in the selected sample


15.23 12.94 15.28 15.45 14.95 17.26 17.79 13.76 21.79 22.18


Stage 2 mean of % of each feature in the selected sample


10.92 10.73 11.01 10.60 11.61 11.04 13.87 10.59 14.82 13.87


Oryx, 2024, 58(2), 192–201 © The Author(s), 2023. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605323000625


Data source Olson et al. (2001)


Shuttle Radar Topography Mission


World Bank (2019b) World Bank (2019a)


GADM (2018) ESA GlobCover Project (2009)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140