230 H. D. Slater et al.
FIG. 1 Monitoring locations in Sikundur and Aras Napal and the Sikundur region within the Leuser Ecosystem in Sumatra, Indonesia.
Microclimate
At each monitoring location, we recorded below-canopy hourly ambient temperature (°C) and light intensity (lux) using Onset HOBO UA-002-08 8 K Pendant Waterproof Temperature & Light Intensity Loggers (Onset, Bourne, USA). Because of a software issue, we were only able to col- lect microclimate data for 49 out of the 60 days. We placed the loggers in a shaded location to minimize the risk of greenhouse effects within the sensor casing from direct sunlight; despite this, there were still some instances of elevated temperature and light intensity measurements. To minimize the effect of these records in the final dataset, we removed data points for which the recorded light inten- sity exceeded 32,000 lux (level of direct sunlight; Hiscocks, 2011, inMarsh et al., 2022). Wealso excluded data points for which temperature increased by.5 °C between consecutive hourly recordings, and the two data points immediately fol- lowing them (to ensure loggers had sufficient time to return to ambient temperatures). Overall, 223 data points were re- moved from the analysis. Finally, we summarized climate data for the entire sampling period (including both night- time and daytime temperatures) and for each 24-h period.
Mammal occurrence
We used mammal detections to determine the occurrence of detectable terrestrial mammal species at each sampling location. At each location, we deployed one SpyPoint Force-Dark remote trail camera (Eurohunt, Harztor, Germany), using 20 cameras in total. These cameras fea- ture 42 no-glow light-emitting diodes and take infrared images at night, thereby avoiding the disturbance of wild- life with camera flashes. We secured cameras at a height
of c. 0.5 m from the ground, facing towards animal signs or probable trails. We removed any vegetation directly in front of the cameras to provide a clear field of view. We did not bait camera locations to avoid influencing animal movements. We set the cameras to take one image followed by a 30-s video when triggered by movement. At the end of themonitoring period,we collected the cam-
eras and identified captured species in individual images using the Integrated Taxonomic Information System data- base (ITIS, 2021).We attached a metadata tag with the stan- dardized common name of the identified species to each image.We extracted image metadata and tabulated allmam- mal detection events with the camtrapR package in R 4.0.0 (Niedballa et al., 2016;R Core Team, 2020). We applied a minimum delta time (i.e. the time between two subsequent detection events of the same species at the same location) of 1 h to prevent captures of the same individual being counted multiple times at one location. For each location, we counted the total number of mammal detections and the number of detections grouped by mammal order. We calculated the naïve occupancy (i.e. the proportion of sites at which a species was detected) of each detected mammal species or family. We checked that the sampling effort was sufficient to capture all detectable families using a species accumulation curve plotted with the vegan package in R (Oksanen et al., 2019). We did this at the family level as some smallmammals could not be identified to species level.
Data analysis
We pooled data from all locations and grouped them by distance from the forest edge (0.0, 0.5, 1.0, 1.5 and 2.0 km). We estimated mammal species richness by calculating the
Oryx, 2024, 58(2), 228–239 © The Author(s), 2023. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605323000212
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140