search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
266 W. Mbamy et al.


this study area, and we identifiedmanioc and banana as the most widely planted crops and those in which elephants most commonly foraged, as also reported in other studies (Fairet, 2012; Nse Nkoghe, 2019). However, elephants were also perceived to forage in other crops such as yams and sugar cane. There was a general consensus that elephants fed on crops at specific times of the year (February–May and August–November), although this was also reported at other times (albeit it at a c. 50% lower rate). The two elephants had markedly different patterns in


their interactions with people. The visits of Amelia were positively related to the planting and harvesting of most crops (10 of 12 crops assessed, significant for six of the 12) defined as attractive to elephants by survey participants. The significant connection with banana harvesting and planting and the cultivation of all other crops in August and September implies a compelling attraction to villages during these periods. However, Nzamba’s visits were con- sistently negatively correlated with the planting and harvest- ing of most crops (10 of 12), and most strongly so for the


banana (R =−0.40) and manioc harvest (R =−0.37). Although there was a general agreement between the em-


pirical elephant visitation data and participant perceptions, the two elephants did not respond to crop availability in the same way: one elephant appeared drawn to periods of high human activity and high resource abundance (the planting and harvesting periods), whereas the other appeared to avoid these periods. Previous research has highlighted that elephants show consistent differences in their movement responses to anthropocentric disturbance and seasonality (Blake et al., 2008; Bastille-Rousseau & Wittemyer, 2019; Beirne et al., 2020;Wall et al., 2021), which is in part because of sex differences in movement behaviour. The same could be true here: the elephant drawn towards the availability of crops is female (Amelia), whereas the male (Nzamba) showed a lower affinity for crops, perhaps because male elephants are more likely to have larger tusks and are targeted more by ivory poachers. Nzamba’s village visits were slightly more nocturnal than Amelia’s, perhaps in- dicating greater caution (Gaynor et al., 2018); when follow- ing elephants for another project, we have also found him to be fearful of human scent and presence. These differences could also represent different foraging tactics, with Nzamba visiting many villages frequently, less predictably and for shorter durations, whereas Amelia is more predictable in her movements and stays longer in each location because of the lower threat of poaching that she faces and the need to provide for her offspring. The differences observed could also be because of reproductive tactics, with the larger home range of Nzamba reflecting a search for potential mates (Vidya & Sukumar, 2005). Additionally, the use of a 1-h resolution of location fixes, as common in other studies, could mask crop visitation by Nzamba between fixes.


Even at this local scale it is clear that cautionmust be ex-


ercised in generalizing results from individual elephants to broader mechanisms of human–elephant interactions with- out collaring larger numbers of both sexes. The majority of forest elephant collaring initiatives to date have focused on protected areas, often far from human settlements (Beirne et al., 2020), but forest elephants occur across almost all of Gabon (Laguardia et al., 2021), and 85% of potential forest and savannah elephant habitat across Africa lies outside current protected areas (Wall et al., 2021). Consequently, we recommend that future collaring targets elephants that might specialize in foraging in and around villages outside protected areas. Only then will we be able to determine whether the tactics adopted by the male and female in this study are consistent with other individuals in other locations and what proportion of elephants regularly use crops. During the course of our surveys some participants indicated they could recognize the individual elephants who foraged in their crops. Such local knowledge should be combined with GPS collar data in future initiatives to identify elephants that consistently visit crops. Understanding how many elephants visit crops and how


often they do so is potentially important for assessing the effectiveness of conservation interventions designed to reduce such visitation. This is relevant to the second most frequent proposal by survey participants for reducing elephant visitation (after the proposal that the govern- ment finds a solution), to kill elephants that approach villages. Knowledge of numbers visiting and frequency of visitation would allow us to determine whether this proposed solution would be appropriate. If a low number of elephants consistently forage in crops, culling these specific individuals might be a solution to protect local live- lihoods without adversely affecting elephant conservation. However, if a high number of elephants visit crops, even infrequently, sustainable culling might be both impossible and ineffective. The third most frequent proposal was compensation for


lost crops. Gabon, like many other countries, lacks stan- dardized assessment guidelines for compensation (Shaffer et al., 2019). If Gabon were to scale up compensation, care would be needed to avoid related problems faced else- where (Shaffer et al., 2019). Electric fencing was the next most frequently proposed solution. One of our study villages had a large-scale electric fence, built by the national park agency shortly before our fieldwork. In the years following installation the fence suffered from low maintenance and ultimately stopped working. This resulted in elephants finding ways to circumvent the fence and enter the planta- tion (Graham et al., 2009;Mutinda et al., 2014; Shaffer et al., 2019), eventually resulting in the death of one person. There have been recent efforts to implement smaller-scale fencing, including in some of our study villages, but their efficacy over time remains unknown.


Oryx, 2024, 58(2), 261–268 © The Author(s), 2023. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605323000704


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140