search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
236 H. D. Slater et al.


TABLE 5 Coefficient estimates for the generalized linear model with Poisson distribution testing the effects of environmental variables on the number of overall mammal detection events (N = 19 loca- tions) at Aras Napal, Indonesia (Fig. 5).


Model 1 Intercept ± SE


Maximum temperature ± SE (°C) Minimum temperature ± SE (°C) Tree height ± SE (m)


Diameter at breast height ± SE (cm) AIC


*P,0.05; **P,0.01; ***P,0.001.


detection events were associated with reports of the ele- phants entering commercial plantations (H.D. Slater, unpubl. data, 2019). There is no evidence of elephants foraging in or damaging smallholder plantations, and resi- dents of Aras Napal generally have a favourable attitude towards them. We found no evidence of large carnivores utilizing forest edges, and there are no reports of them


27.47* ± 10.72


−0.13*** ± 0.03 −1.14* ± 0.49 −0.11*** ± 0.02


0.19*** ± 0.03 171.89


entering agricultural areas. Although reported human– wildlife interactions are relatively infrequent and local toler- ance of wildlife remains high (H.D. Slater, unpubl. data, 2019), the situation warrants monitoring to ensure human–wildlife conflict remains low. Although we found clear relationships between mammal detections and temperature, tree height and tree diameter, there are other factors that are probably important drivers of mammal occurrence. Higher human foot traffic and hunting risk lead to more vigilant animal behaviours or the avoidance of areas with high human impact (e.g. wol- verines Gulo gulo; Stewart et al., 2016). Differences in species composition and food availability at the forest edge also in- fluence the distribution of species, and the effects of abiotic changes at the forest edge could therefore be indirect. Deer, for example, are preferred prey for tigers (Allen et al., 2021) and were detected less frequently near the forest edge. Because of our relatively small study area and the low population density of some mammal species, the sample sizes were too small to perform more detailed analyses.


FIG. 5 Generalized linear model predictions (lines) with 95% CIs (grey shading) and observed numbers of mammal detections against (a) maximum temperature, (b) minimum temperature, (c) tree height and (d) diameter at breast height on the total number of mammal detection events at Aras Napal, Indonesia (Table 5).


Oryx, 2024, 58(2), 228–239 © The Author(s), 2023. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605323000212


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140