search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Jennings et al.—New fossil evaniid wasp from Eocene Baltic amber


193


Figure 5. Hymenoptera with modified eyes. (1) Inostemma oculare Austin (Platygastridae) paratype ♀, from India, dorso-lateral view showing small horizontal ledge in the upper quadrant of the eye. Scale line = 100 µm. (2) Isomerala azteca Girault, 1920 (Eucharitidae) ♀, from central America, anterior head showing cone-like structure of the eye. Scale line = 200 µm.


sized lenses in the miniature dipteran predatorCoenosia attenuata Stein, 1903 support resolution well below 3°, so it is conceivable that these large facets are associated with a small region of high acuity (Gonzalez-Bellido et al., 2011). That being the case, it is surprising that the largest facets are in this case found at a position that is almost the inverse of what one would expect, correspond- ing to a small radius of curvature (on the cone).Also perplexing is that the smaller facets in the transition area from the cone to the margin of the eye have a large radius of curvature. Normally in an acute zone the larger radius of curvaturewould be associatedwith larger facets. However, some caution is required in interpreting this arrangement because only the radius of curvature can be used to infer the direction that individual ommatidia view. This cannot take into account that, in many insect species, the underlying photoreceptors are displaced. Indeed, the bizarre position of a possible ‘acute zone’ is supported by a large pseudopupil visible from the frontal view of both eyes in Figure 5.2. In the cone- shaped eye structure of these species, it seems unlikely that this is not a region where the inter-ommatidial angle would be very large, yet the point-source resolution of individual facets of 23µm is potentially quite high, thus being a somewhat paradoxical design representing a likely extreme formof what has been considered to be optical under-sampling. However, extreme under-sampling is seen in other taxa, including some so-called ‘bright-zone’ eyes of Diptera (van Hateren et al., 1989) and in the peripheral eyes of jumping spiders, where it appears to be an interesting adaptation to detect small contrasting features (Land, 1985). Whether this is the case for Isomerala is unknown given little if anything is known about its biology.


Eye modifications in other insects.—Among other extant insects, the flower-mimicking hymenopodid mantids have strikingly modified eyes (Wipfler et al., 2012; O’Hanlon and Norma-Rashid, 2013). In these species, however, the vertical


tubercular extension of the dorsal eye is a chitinous structure that lacks functional ommatidia, rather than part of the eye per se. This eye modification is therefore not an adaptation that changes or enhances visual acuity, but rather is more likely associated with behavioral recognition among conspecifics or associated with procrypsis. A similar functional division as in P. oculiseparata n. sp.


between the upper (dorsal) and lower (ventral) eye is seen in a number of extant bibionid flies (Zeil, 1983), usually with some discontinuity in the transition zone between these eye regions. However, a distinct and abrupt division between the frontal and lateral eye fields, as in P. oculiseparata n. sp., is not present in these flies. A more abrupt division between the frontal and lateral eye


fields (although still not ridge-like) is exhibited by some extant hypercephalic drosophilid flies, such as Zygothrica dispar Wiedemann, 1830, Z. latipanops Grimaldi, 1987, and


Z. exuberans Wheeler, 1968 (see Grimaldi and Fenster, 1989, fig. 4), resulting in eye shapes that strongly resemble the condition found in P. oculiseparata n. sp. Interestingly, the eye modifications are only present in male Zygothrica Wiedemann, 1830. Unfortunately, the female of P. oculiseparata n. sp. is so far unknown, so we do not know whether the eye is sexually dimorphic in this fossil species. However, there is a very important difference between the eye modification in male Zygothrica and P. oculiseparata n. sp., which could be indicative of different biological functions. In these Zygothrica species the eyes are pushed antero-laterad due to the expansion of the dorsal portion of the fronto-orbital plate and the occipital sclerite (Grimaldi and Fenster, 1989), while the eyes are in the normal position in P. oculiseparata n. sp. Thus, while the eyes of these drosophilids are very similar to P. oculiseparata n. sp., and may provide a similar optical solution, they may also result from completely different selective pressures since there is no


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204