search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Journal of Paleontology, 92(2), 2018, p. 189–195 Copyright © 2017, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.83


A new fossil evaniid wasp from Eocene Baltic amber, with highly modified compound eyes unique within the Hymenoptera


John T. Jennings,1 David D. O’Carroll,2 Priya,1 Lars Krogmann,3 and Andrew D. Austin1*


1Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, SA 5005, Australia ⟨john.jennings@adelaide.edu.au⟩; ⟨andy.austin@adelaide.edu.au⟩; ⟨priya@adelaide.edu.au⟩ 2Department of Biology, University of Lund, Sölvegatan 35, S-22362 Lund, Sweden ⟨david.ocarroll@biol.lu.se⟩ 3State Museum of Natural History Stuttgart, Entomology, Rosenstein 1, 70191 Stuttgart, Germany ⟨lars.krogmann@smns-bw.de


Abstract.—Evaniid wasps develop as solitary egg predators within the oothecae of cockroaches. Fossil evaniids are relatively common compared with most other parasitoid Hymenoptera, undoubtedly due to their searching for host cockroaches on tree trunks and thus an increased chance of being trapped in tree resin. The genus Parevania Kieffer, 1907 is widely distributed through the Old World and is also known from a small number of rather unremarkable fossil taxa. Here we add to this extinct fauna Parevania oculiseparata Jennings, Krogmann, and Austin new species from Baltic Eocene amber, a species that has highly modified compound eyes that are unique among the Hymenoptera, and possibly among insects as a whole. Parevania oculiseparata n. sp. possesses a prominent acute ridge extending across the entire dorso-ventral elongation of the eye surface. Modifications to the regular curved surface of the eyes are extremely rare among Hymenoptera and previously were only known from two species of Inostemma Haliday, 1833 (Platygastridae s. s.) and the three known species of Isomerala Shipp, 1894 (Eucharitidae). In describing this unusual fossil evaniid species, we also analyze the optical consequences of the eye surface dis- continuity, and discuss different types of compound eye modifications that occur in other Hymenoptera and other insects.


Introduction


Ensign or hatchet wasps (family Evaniidae) are solitary pre- dators on cockroach eggs in oothecae, and are easily diagnosed by a uniquely ensign- or hatchet-shaped metasoma with a tub- ular petiole and a shortened, laterally compressed metasoma. The fauna comprises ~650 extant species in 22 extant and 13 fossil genera (Deans, 2005; Deans et al., 2013; Engel et al., 2016). This relatively rich record of fossil taxa compared with some other parasitoid Hymenoptera is undoubtedly due to their searching for host cockroaches on tree trunks, and thus an increased chance of being trapped in tree resin. The genus Parevania Kieffer, 1907 is known from 26 extant


species and one subspecies from the Old World (Deans and Huben, 2003; Deans et al., 2013), and three fossil species,P. brevis (Brues, 1933), P. producta (Brues, 1933), and P. remanea (Brues, 1933) (Nel et al., 2002; Deans, 2005). Although Bradley (1908) treated Parevania as a subgenus of Zeuxevania Kieffer, 1903, Deans and Huben (2003) suggested that the genus is distinct but similar to Evaniella Bradley, 1905. However, Deans et al. (2006) found that Parevania is not monophyletic, and suggested it should be synonymized with Zeuxevania and Papatuka Deans, 2002 although this has not been formalized. Twenty-eight evaniid species have been described from


Mesozoic (Early to Late Cretaceous) or Tertiary ambers (Eocene to Miocene) and seven species from non-amber deposits, mostly


* Corresponding author


Early to Late Cretaceous (see Jennings et al., 2012, 2013a, b; Peréz-de la Fuente et al., 2012; Engel et al., 2016). Five evaniid species are knownfromEocene Baltic amber: Evaniella eocenica (Sawoniewicz and Kupryjanowicz, 2003), Hyptia hennigi Jennings, Krogmann, and Priya, 2013b, and three species of Parevania; P. brevis, P. producta,and P. remanea (Brues, 1933; Nel et al., 2002; Deans, 2005). Unfortunately the holotypes of the latter three species were deposited in Gdansk and destroyed during WorldWar II (Nel et al., 2002). Recently, a large quantity of Eocene Baltic amber with


hymenopteran inclusions was obtained by the State Museum of Natural History, Stuttgart. Examination of this material has revealed a new species of Parevania that has the most highly modified eyes of any known member of the order, and possibly of all insects, in that the eye surface has a prominent acute ridge running across and dividing the eye into two distinct regions. Here we describe this new species, present a brief analysis of the optical consequences of the eye-surface discontinuity, and discuss the likely function of the eye ridge compared with the types of compound eye modifications that occur in other Hymenoptera and other insects.


Materials and methods


Imaging and terminology.—The amber piece containing the fossil specimen, which had previously been polished, was immersed in 50% glycerol, and images taken using a Visionary Digital BK plus imaging system with a Canon EOS 7D 18


189


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204