search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
124


Journal of Paleontology 92(2):115–129


subepidermal muscle tube. Contraction of the circular muscles during locomotion causes annular wrinkling of their cuticle, thus scalidophorans could be annulated. In contrast, nematoids lack circular muscles, retaining only longitudinal muscles, and they evolved internal cuticular longitudinal thickenings. These two fea- tures together result in a different mode of locomotion, a kind of wriggling in zig-zag shape. The trunk of nematoids is usually long and thin. However, annulation may occur in certain nematodes like in Desmoscolex frontalis (Decraemer, 1986, his fig. 5B). Eopriapulites sphinx has a body consisting of internally hollow introvert scalids, collar scalids, and an annulated trunk, suggesting a systematic position within the Scalidophora. However, E. sphinx lacks characters that allow it to be assigned to any in-group Scali- dophora, and this taxon is interpreted as a stem-lineage derivative of Scalidophora, an assignment that is also supported by phylogenetic analyses (Liu et al., 2014b; Shao et al., 2016). The exact phylogenetic assignment of Eopriapulites is foun-


Figure 8. Suggested phylogenetic positions of Olivooides and Quadrapyrgites.(1) Strict consensus tree derived from analysis of the original dataset of Dong et al. (2016); (2) strict consensus tree derived from analysis excluding character 88 (presence or absence of periderm teeth). Symbol † in this figure and in Figure 9 denotes extinct taxa.


In order to test the phylogenetic positions of Olivooides and


Quadrapyrgites, we carried out a phylogenetic analysis. The selected taxa and characters followDong et al. (2016). First,we re- analyzed Dong et al.'s dataset (Datamatrix 1), and got 10 most parsimonious trees (MPTs), Tree Length (TL)=127, Consistency Index (CI)=0.740, Retention Index (RI)=0.738. The strict con- sensus tree presented (Fig. 8.1) is consistent with Dong et al.’s result (2016, their fig. 10A). In order to test the bearing of the presence of periderm teeth (the 88th character) upon the topology of the phylogenetic tree, we deleted the coding of the 88th char- acter, and re-analyzed the revised datamatrix (Datamatrix 2).We got 40 MPTs, TL=126, CI=0.738, RI=0.734. The strict con- sensus tree is presented (Fig. 8.2). The monophyly of Olivooides, Quadrapyrgites,Conulariids, and Coronatae is still supported, but the internal relationships are collapsed. Without the inclusion of the presence of periderm teeth, the


internal relationships of Olivooides, Quadrapyrgites, conulariids, and Coronatae are not resolved in the current study (Fig. 8.2). However, the monophyly of Olivooides, Quadrapyrgites, conulariids, and Coronatae is still supported by one character—the presence of an all-embracing periderm. The inter- pretation of the periderm teeth is highly doubted, and should not be coded in the phylogenetic analysis currently.


Eopriapulites sphinx.—The cuticular scalids of modern scalido- phorans are internally hollow up to the tip and contain sensory cells that lead to a hole distally, whereas the hooks of nematoids are solid (Schmidt-Rhaesa, 1998). Modern scalidophorans have, ple- siomorphically, both longitudinal and circular muscles in their


ded on the assumption that the ground pattern of each node in the phylogenetic tree of Cycloneuralia is well resolved. But unfortu- nately, there are many conflicts and uncertainties about the ground pattern characters of Cycloneuralia and its in-groups, Nematoida, and Scalidophora. For example, it is uncertain whether the stem species (= last common ancestor) of Cycloneuralia has internally hollow or solid introvert scalids/hooks. The occurrence of both longitudinal and circular muscles in the body wall of Scalidophora is a plesiomorphic feature retained from the last common ancestor of Cycloneuralia/Nemathelminthes and Bilateria (Ax, 2003; Niel- sen, 2012). Absence of circular muscles in modern nematoids is a secondary loss, hence an autapomorphy of Nematoida. Therefore, assignment of Eopriapulites to the Scalidophora based on internally hollow scalids and an annulated trunk might be incorrect because these two characters may be simply plesiomorphic states, referring to the stem species of Cycloneuralia. Eopriapulites would still belong to Cycloneuralia, but assignment to an in-group requires knowledge about more morphologically significant details. In order to further test the phylogenetic position of


Eopriapulites, we carried out a number of phylogenetic analyses. The coded characters followed those used by Zhang et al. (2015), and the data matrices are provided in the Supplementary Data (Datamatrices 3 and 4). The palaeoscolecid species, Palaeoscolex piscatorum Whittard, 1953, Chalazoscolex pharkus Conway Morris and Peel, 2010, Xystoscolex boreogyrus Conway Morris and Peel, 2010, and Guanduscolex minor Hu et al., 2008, are replaced with Palaeoscolecida sensu stricto (Harvey et al., 2010). Markuelia hunanensis is not included in the analysis. Dong et al. (2004) pro- posed that M. hunanensis should be a direct developer without larval stages, and under such condition M. hunanensis can be included in the phylogenetic analysis because the adults and the pre- hatching embryos have similar morphology. However, further development of M. hunanensis is unknown because we lack infor- mation on its post-embryonic, free-living stages (Haug et al., 2009). Parsimony analysis (Datamatrix 3) including extant cyclo-


neuralians plus E. sphinx and Palaeoscolecida sensu stricto yielded 429 MPTs (TL=249, CI=0.683, RI=0.898). The 50% majority rule consensus tree (Fig. 9.1) resolvesE. sphinx and Palaeoscolecida


Figure 9. Suggested phylogenetic positions of Eopriapulites and Palaeoscolecida sensu stricto. (1) 50% majority rule consensus tree derived from analysis including extant cycloneuralians plus Eopriapulites sphinx and Palaeoscolecida sensu stricto; (2) 50% majority rule consensus tree derived from analysis including extant and extinct cycloneuralians.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204