search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Calede et al.—Ecomorphology of Leptarctus oregonensis


posteriorly as in other species of Leptarctus (Olsen, 1958; Lim et al., 2001; Korth and Baskin, 2009), but also display a smooth articular surface medially. The ventral surface of the skull, particularly the basicra-


nium, is better preserved in the new skull from the Mascall Formation of Oregon (UOMNH F-35458) than in the specimen from the Olcott Formation of Nebraska (AMNH 18241). The following description is based on the specimen from Oregon except when specifically referencing the specimen from Nebraska. In ventral view (Fig. 1.2), both the maxilla and the palatine are slightly concave in UOMNH F-35458. The maxilla of AMNH 18241 also displays a concavity. The anterior border of the suture between the maxilla and palatine is at the mesial end of P4. The lateral branches of the maxilla and palatine suture extend just medial to M1. The posterior palatine foramen cannot be distinguished. The palatine is much narrower posterior to the


tooth row and ends with the pterygoid flanges. The pterygoid flanges are curved and extend posteriorly; they are tall (Table 1) and thickened anteriorly (Fig. 1.2). There is a ridge of bone lateral to this thickening, parallel to the pterygoid flange. The size and thickening of the pterygoid and the presence of this bony ridge may indicate an enlarged pterygoideus muscle, a jaw-closing muscle (Hall, 1926; Davis, 1964; Endo et al., 2003). A ridge also extends medially to the pterygoid flanges,


starting at the posterior end of the palatine and ending at the posterior end of the basioccipital. It is tall and medio-laterally compressed anteriorly but is low and broadened posteriorly. The suture on the right flange of the pterygoid indicates that both the palatine and the basisphenoid contribute to the pterygoid flange. The foramen ovale of the basisphenoid is within the size range of that of L mummorum (Korth and Baskin, 2009). The bone ridge lateral to the pterygoid flange extends lateral to the foramen ovale and contacts the auditory bulla at the posterior end of the foramen. The foramen is teardrop shaped with the broader end located posteriorly; the opposite end extends between the pterygoid flange and the ridge of bone. Laterally to the foramen ovale and medially to the glenoid fossa of the squamosal is a narrow concave bone surface (Fig. 1.2). The squamosal wraps around the fossa farther anteriorly and ventrally in UOMNH F-35458 than in AMNH 18241, which is evidence for a tighter dentary-squamosal articulation in the Mascall specimen. The eustachian canal is located anteriorly to the bulla and posterior to the foramen ovale. It is small, but slightly larger in UOMNH F-35458 than in AMNH 18241. As mentioned by Korth and Baskin (2009) for other specimens, there is no evidence for a foramen anterior to the paroccipital process and posterior to the auditory bulla in either one of the adult skulls (UOMNH F-35458 or AMNH 18241). This foramen would be the entrance of the auricular branch of the vagus nerve, purportedly lost during ontogeny in Leptarctus (Korth and Baskin, 2009). The paroccipital process of L. oregonensis, visible in UOMNH F-35458 (Fig. 1.2), is likely the site of the origin of a powerful digastric muscle, as in other members of Mustelidae, Mephitis, the giant panda, and some felids (Hall, 1926; Davis, 1964; Riley, 1985; Antón et al., 2004). The strong mastoid process of UOMNH F-35458 would have provided additional surface for the origin of a powerful digastricus muscle as it does in Mephitis, Spilogale, and Martes (Hall, 1926). The digastricus muscle depresses the mandible,


297


opening the mouth (Antón et al., 2004). In Enhydra, the sea otter, the mastoid also provides surface attachment for the temporalis and the horizontal portion of the masseter muscles (Riley, 1985), giving the animal a greater bite force at the canines and/or cheek teeth than in relatives without this expanded muscle attachment area (e.g., Lontra), although body mass may also play a role in this increased bite force (Riley, 1985).


Posterior to the glenoid fossa of the squamosal is an oval,


anterolaterally to medio-laterally oriented post-glenoid foramen (Fig. 1.2). It is larger and located more laterally than in L. mummorum (Korth and Baskin, 2009). The auditory bulla is fully fused to the base of the skull, as in Leptarctus mummorum. The auditory bulla is narrow medio-laterally. It bears a peculiar process extending anteroventrally (Figs. 1.2, 2.1, 4). This is the bullar process of Korth and Baskin (2009), also called tympanic projection by Lim and Martin (2001a). This is a common feature of the genus Leptarctus, with the exception of L. webbi, which lacks processes (Baskin, 2005). Overall, the tympanic projec- tion of L. oregonensis is most similar to that of L. ancipidens (see Olsen, 1958). It is very tall and its ventral edge is the ventral-most feature of the skull (Fig. 2.1). The posterior side of the bulla bears two parallel ridges extending dorso-laterally to ventro-medially. These two ridges are thicker on their dorsal- most end and thinner towards their attachment to the bulla. The anterior process of the bulla (Fig. 4) consists of a series (unlike the simple processes of L. mummorum and L. supremus; Lim et al., 2001; Korth and Baskin, 2009) of non-overlapping (unlike L. primus, but as in L. ancipidens; Olsen, 1958; Lim and Martin, 2001a) anteroventral projections, the two anterior-most of which are separated by a canal, as in L. ancipidens (see Olsen, 1958) and L. primus (Lim and Martin, 2001a). The tympanic projection is broken posterior to a third damaged projection. Additional projections can be distinguished at the dorsal end of the posterior surface of the tympanic projection, forming lobes ventral to the paroccipital process (Fig. 4; jugular process of Lim and Martin, 2001a). These lobes and the third projection (posterior to the ones than form the canal) are not present in other species of Leptarctus. The contact between the two projections and the canal are aligned with the external auditory meatus, located dorso-posteriorly to the tympanic projection, as in L. ancipidens. This state is unlike L. primus, where the contact and canal are aligned with the postglenoid foramen, located anterodorsally to the tympanic projection farther from the mastoid process than the external auditory meatus. As in L. primus, but unlike L. kansaensis, the tympanic projections of L. oregonensis do not extend posteriorly to the edge of the


Figure 4. Tympanic projections of the auditory bullae of Leptarctus oregonensis (UOMNH F-35458): (1) medial view; (2) lateral view. White * denote the taphonomic damage mentioned in the text. Scale bar is 5mm.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204