search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Journal of Paleontology, 92(2), 2018, p. 157–169 Copyright © 2017, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.81


A new late Carboniferous coleoid from Oklahoma, USA: implications for the early evolutionary history of the subclass Coleoidea (Cephalopoda)


Larisa A. Doguzhaeva1 and Royal H. Mapes2


1Department of Palaeobiology, Swedish Museumof Natural History, P.O. Box 50007, Stockholm SE-104 05, Sweden ⟨larisa.doguzhaeva@gmail.com⟩ 2American Museum of Natural History, Central Park West at 79th Street, New York City, New York 10024-5100, USA ⟨mapes@ohio.edu


Abstract.—The limited record of the bactritoid-like coleoid cephalopods is here expanded due to discovery of a late Carboniferous (Moscovian) orthocone comprising a phragmocone and a body chamber with a proostracum-like structure, a sheath-like rostrum, an ink sac, and a muscular mantle preserved on top of the conch. The specimen comes from the Wewoka Formation in the vicinity of the city of Okmulgee, Oklahoma, which previously yielded an orthocone indicative of an evolutionary branch of the Carboniferous cephalopods described as the order Donovanico- nida Doguzhaeva, Mapes, and Mutvei, 2007a within the subclass Coleoidea Bather, 1888. Here, we describe from that site a bactritoid-like coleoid, Oklaconus okmulgeensis n. gen. n. sp. in Oklaconidae n. fam. A broad lateral lobe of the suture line and a compressed conch with a narrowed dorsal side and a broadly rounded ventral side distinguish this genus from Donovaniconus Doguzhaeva, Mapes, and Mutvei, 2002b. The muscular mantle is preserved as a dense sheet-like structure, with a crisscross pattern and a globular-lamellar ultrastructure. Recent knowledge on the early to late Carboniferous coleoids is discussed. Carboniferous coleoids show a high morphological plasticity with a capacity for being altered to create the diverse combinations of ‘bactritoid’ and ‘coleoid’ structures. This could be the principle evolutionary driver of their radiation in the late Carboniferous.


Introduction


Prior to the current century, the Late Triassic Phragmoteuthis bisinuata von Mojsisovics, 1882 (= Belemnoteuthis of Bronn, 1859;=Acanthoteuthis Suess, 1865) from the Austrian Alps was the oldest coleoid known to have an ink sac (Bronn, 1859; Suess, 1865; von Mojsisovics, 1882; Doguzhaeva et al., 2007c; Doguzhaeva and Summesberger, 2012). Recently, the oldest coleoids with ink sacs have been reported from the lower to upper Carboniferous of North America (Doguzhaeva et al., 2002c, d, 2003, 2004a, 2007a, 2010a; Mapes et al., 2010a, b; Mapes and Doguzhaeva, 2017). These taxa illuminate their high morphological diversity and evolutionary radiation in the late Carboniferous (Doguzhaeva et al., 2010a). Flower and Gordon (1959) described the first Carboniferous


coleoid genera (Hematites, Paleoconus,and Bactritimimus)that were referred to the order Aulacocerida Stolley, 1919 because of the presence of a robust rostrumcovering the phragmocone. Since then, the Middle Pennsylvanian (Moscovian=Desmoinesian) deposits in Illinois (theMazon Creek Lagerstätte) and Oklahoma (Deep Fork River locality) have been the world’s primary Car- boniferous coleoid ‘producers’ of that age (Johnson and Richardson, 1966, 1968; Saunders and Richardson, 1979; Allison, 1987; Kluessendorf and Doyle, 2000; Doguzhaeva et al., 2002b, 2002c, 2007a, 2010b). Recently, the Carboniferous phragmocone-bearing coleoids have been assigned to four orders: Hematitida Doguzhaeva, Mapes, and Mutvei, 2002a; Donovani- conida;Aulacocerida, and Spirulida Pompeckj, 1912, all of which have a small marginal siphuncle, contrary to paracoleoids with a


broad central siphuncle (Doguzhaeva et al., 2017). The present paper is focused on a new late Carboniferous bactritoid-like coleoid fromOklahomawith an ink sac in the body chamber and a muscular mantle on top of the conch. The record of ink sacs in Carboniferous coleoids and a lack of the body chamber in Hematites and its significance for clarifying the origin of a proostracum in belemnoids are also discussed.


Geological setting and environmental conditions


The studied specimen, as well as the earlier described bactritoid- like coleoid Donovaniconus oklahomensis Doguzhaeva, Mapes, and Mutvei, 2002b comes from the Wewoka Formation, Pennsylvanian, Desmoinesian (=late Carboniferous, Moscovian) in Oklahoma, USA. The Oklahoma occurrence is limited to the Deep Fork River locality ~5km to the west of the community of Okmulgee on the western side of the Deep Fork Creek bridge on Oklahoma Highway 56 (see Mapes, 1979, locality P-6, p. 9–10, or locality OKD-10 of Boardman et al., 1994, SE1/4, SE1/4, sec. 10, T. 13N, R. 12E; Okmulgee Lake 7½’ quadrangle). The locality is a fossil-bearing shale bed with a single carbonate concretion layer. This layer yielded the coleoids Donovaniconus and Oklaconus n. gen. The concretions are always longer than thick (maximum and minimum length, ~150mm and 450mm, respectively, and ~70mm thick). They commonly contain diverse ammonoids at all stages of growth, numerous juvenile bactritoids, rare orthoconic and coiled nautiloids, rare cephalopod beaks, the spat of bivalves and gastropods, and fish debris (see Mapes, 1979, locality P-6).


157


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204