Manthi et al.—Giant Pleistocene lion from East Africa
skull has been crushed transversely such that the right maxilla is angled medially (from dorsal to ventral). The P3 has lost enamel on the mesiolingual edge and is
damaged distally and distolingually. It is a robust tooth lacking a mesial accessory cusp. The main cusp is tall and slightly worn. The distal accessory cusp is prominent, set free from the main cusp, and followed distally by a cusplet on the distal cingulum. Enough remains of the tooth to obtain an accurate measure of length,while thewidth of the tooth can only be estimated. The P4 has sustained more damage than P3. The parastyle is chipped and broken, the protocone apex is broken, the paracone is nearly entirely lost except for a small part of the distolingual face, and the metastyle is buccally and distally damaged. Thus, for all intents and purposes, what remains of this tooth is its outline. However, themesial end can be estimated by the better-preserved distal P3 and an assumption that the two teeth abut. The distal end can be estimated by the distal end of the alveolus, together with comparisons with extant lions and the difference between the distal end of the alveolus and distal end of P4 in those specimens. Thus, just enough remains to obtain minimum estimates of
LP3, WP3, LP4, WaP4, PL, and BL (see Abbreviations). These measurements in turn provide estimates of various aspects of the specimen’s size and proportions (dental compared to cranial). The specimen can be identified as felid because of the
dental reduction, the relatively slender P3 with prominent distal accessory cusp, and the reduced protoconid on the upper carnassial. It can be identified as Felinae (conical-toothed cat) rather that Machairodontinae (sabretooth cat) based on the relatively robust upper cheek teeth and the oval upper canine. It can be identified as lion, Panthera leo, based on size, because lion is the largest of the Felinae in Africa and there is no reason based on the present material to hypothesize the presence of any previously unknown Felinae species on the continent in the late Middle Pleistocene.
Metric analysis.—The measurement data for the specimen are given in Table 1, together with our estimated uncertainty for each one. Summary statistics on the measurement data of the comparative samples are given in Table 2 and the raw data in Supporting Information. In the following we focus attention on two measurements: LP3 and PL, because these are the dental and cranial measurements, respectively, that are the most accu- rate, and, at the very least, were no smaller than the values given. The sample size for P. spelaea PL is very small (N=3). This has no important bearing on the conclusions, but to increase veracity BL is also included. This measurement is probably somewhat less accurate than PL, but is available for more specimens of P. spelaea.
Table 1. Measurement data for KNM-ND 59673. All measurements are mini- mum estimates. Uncertainty legend: *** fairly accurate, error estimated to ≤1%; ** reasonably accurate, error estimated to >1%, ≤2%; * poorly accu- rate: error estimated to >2%. Importantly, since all measurements are mini- mum estimates, the analyses will also provide minimum estimates of the overall size of the specimen. For abbreviations, see Material and Methods.
Measurement LP3
LP4 PL BL
Value (mm) 27.6
196 380
38.3
Uncertainty **
*** **
*
309
Table 2. Basic statistics for the three comparative taxa and four variables used in the paper. Raw data are given in Supplementary Information. For abbreviations, seeMaterial and Methods.
Group
LP3 Mean
LP4 Mean
Standard deviation Minimum Maximum
Standard deviation Minimum Maximum
Mean
Standard deviation Minimum Maximum
Mean
Standard deviation Minimum Maximum
Panthera leo Panthera spelaea Panthera atrox
24.0 21.2
N35 29.3
35.8 32.5
40.0
N35 PL
142.2 116
N35 BL
170
268.7 220
312 N30 24.576 14.090 2.000 1.851
27.0 23.5
31 51
39.7 33.5
44.7 54
178.3 167
192 3
326.1 291
375 9
29.379 12.662 2.653 2.000
27.3 23.9
30.6 34
45.0 36
39.6 35.0
176.7 143
212 24
405 24
333.6 269
34.034 18.684 2.488 1.915
The selected measurements were analyzed using box-and-
whisker plots (Fig. 4). The plot of LP3 (Fig. 4.1) shows extant P. leo to have a much shorter P3 than the two fossil species, P. atrox (Leidy, 1853) and P. spelaea. This is, of course, well known and corroborated by the t-tests (Table 3). The difference between the two fossil species is not significant. The length of the P3 of KNM-ND 59673 is greater than all but one of the extant lions in the comparative sample. The latter specimen is unfortunately of unknown origin. It should be noted that lions from South Africa are relatively underrepresented in the sample, and if Bergmann’s Rule holds for lions, as suggested by Klein (1986), the largest lions would be expected to come from there. The South African lions included are among the largest in the sample. Figure 4.1 also shows that P3 length in KNM-ND 59673 lies within the 4th quartile of both P. atrox and P. spelaea, although it is not among the very largest. Thus, P3 in KNM-ND 59673 is unusually long for an extant lion, but within the range of variation of the species. The relationships seen for P3 length also largely apply to
P4 length, although it is noteworthy that P4 is relatively much shorter than P3 in comparison to the other samples (Fig. 4.2). It is still longer than most specimens of P. leo, but does not lie outside the 95% confidence interval of that taxon. Relative to P. atrox and P. spelaea, the P4 of KNM-ND 59673 is well below median length. The same relationships between the comparative samples
apply to the variables PL and BL as to LP3 (Fig. 4.3, 4.4). These measurements in KNM-ND 59673 are, however, substantially larger than those of any extant lion. Compared to P. spelaea, KNM-ND 59673 is larger than all available specimens with a measurable PL (N=3 only) and BL (N=9). Compared to the much larger samples of P. atrox, KNM-ND 59673 is larger than all but two for both PL and BL. These comparisons show that in terms of skull length, KNM-ND 59673 is of the size of a large specimen of P. atrox, which in turn was a much larger species than the extant P. leo.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204