search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Chiba et al.—Systematic re-evaluation of Medusaceratops 1 2 cm 2 3


283


med. lat.


ant. post.


Figure 8. Thin-section photographs of mid diaphyseal cross-section of a tibia from the Mansfield bonebed (ROM 67873). Whole cross section images under (1) plane polarized and (2) cross-polarized light; (3) close-up images under plane polarized (left half) and cross-polarized light (right half).


unequivocally ceratopsid, and, given that no other ceratopsids can be confirmed from the locality, we infer that this specimen represents the tibia of Medusaceratops. The mid-diaphyseal thin section of ROM 67873 is mainly


composed of densely vascularized secondary bone (Fig. 8). A lenticular medullary cavity (~3cm × 2.5 cm) is decentered posteriorly. A 0.5–1 cm layer of trabecular bone consistently surrounds the medullary cavity, except on the lateral side where the trabecular bone spans 3 cm. The cortical bone is distributed relatively consistently on the posterior half of the shaft (2 cm), but gradually thickens towards the anteriormost part where cortical bone thickness reaches ~3 cm. The cortical bone is composed of heavily remodeled Haversian bone with occa- sional Volkmann’s canals. Therefore, primary bone tissue is severely obliterated, except in a thin peripheral region ~5mm from the outer periosteal margin. The primary bone tissue along the outer periphery of the bone is comprised of poorly vascu- larized, parallel-fibered bone tissue with multiple growth lines that likely represent closely packed lines of arrested growth (LAGs), although any given growth mark cannot be traced around the entire periphery of the bone. Spacing between these growth lines rapidly narrows towards the outer periosteal mar- gin, and forms an external fundamental system (EFS; Fig. 8.3). Extensive remodeling, parallel-fibered bone, and the presence of an EFS indicate that this individual had reached its asymptotic body size. This indicates that the largest individuals in the Mansfield bonebed were likely mature individuals, and allows comparisons of body size with other later ceratopsids (see Discussion).


Phylogenetic analysis


Medusaceratops could be coded for 64 out of 101 characters in the phylogenetic analysis (Supplemental data). The analysis recovered 630 most parsimonious trees, each with 181 steps. The Consistency Index and Retention Index of each most par- simonious tree is 0.624 and 0.791, respectively. In the strict consensus tree (Fig. 9), Medusaceratops lokii is supported by three autapomorphies (character 59[2], elongate flattened ep 2; character 60[1], laterally curved ep 2; and, character 62[1] laterally curved ep 3). Medusaceratops is nested within


Centrosaurinae with four unambiguous synapomorphies (char- acter 1[0], a rostral with short dorsal and ventral processes; character 2[1], a semicircular premaxillary septum; character 8[1], caudoventral expansion of a premaxilla, and character 51[1], a relatively wide parietal midline bar) and one ambiguous character (character 3[1], the septum composed of premaxilla and nasal). Medusaceratops is recovered in a polytomy with


Albertaceratops, Wendiceratops + Sinoceratops, and the newly defined clade Eucentrosaura. In our analysis, this new clade includes Centrosaurini (sensu Maiorino et al., 2015 and Ryan et al., 2017; Rubeosaurus, Styracosaurus, Spinops, Centrosaurus, Coronosaurus), Einiosaurus, and members of Pachyrostora with nasal bosses (sensu Fiorillo and Tykoski, 2012). Eucentrosaura does not include Xenoceratops, Wendiceratops,or Sinoceratops, unlike Sampson et al. (2013) and Lund et al. (2016a, 2016b), where these taxa were recovered in Pachyrhinosaurini. The members of Eucentrosaurua here have five synapomorphies: 17[1], maxillary tooth row at the same level as the rostral edentulous portion of the maxilla; 20 [1], presence of a distinct nasal horncore; 28[0], short post- orbital horncore; 66[1], presence of ep 6; 68[1], presence of ep 7. Xenoceratops is recovered as the sister taxon to the least inclusive clade containing Medusaceratops and Pachyrostra in the strict consensus tree. The overall morphology of the strict consensus tree is similar to that of Evans and Ryan (2015) and Ryan et al. (Ryan et al., 2017), except for the loss of resolution in the strict consensus tree within the Centrosaurini. The strict consensus topology recovered in this analysis is


generally weakly supported, as is typical of most recent centrosaurine phylogenetic analyses (e.g., Evans and Ryan, 2015). Within Ceratopsidae, the Bremer Decay Index is only high (>2) at the bases of Chasmosaurinae, Centrosaurinae, Pachyrhinosaurini, and the genus Pachyrhinosaurus,with most nodes within Centrosaurinae having a Bremer Decay value of 1. Bootstrap values shows similar patterns of relative support (Fig. 9). The constrained analysis, in which Medusaceratops lokii is


inferred to be a chasmosaurine, resulted in eight extra steps in the most parsimonious trees compared to the original analysis where it is recovered nested within Centrosaurinae.


1 cm


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204