microelectronics technology
In the aggregate of systems throughout the world, cost factors rather than leading-edge specifications are of paramount importance. This is particularly true in high- population, emerging economies such as China, India, and Eastern Europe. In these regions the monthly subscription cost, and by extension the capital cost of building new networks, governs the decision over whether to build out new networks. Silicon bipolar hybrids still dominate those markets, but the GaAs performance value is starting to take hold. The high cost of GaN-based hybrids will likely restrict their success in these desirable high-growth markets.
Other important sub-markets within cable TV are those for headend high-efficiency amplifiers and customer premise distribution. While the RF output level of the headend application is 5 to 10 dB lower than that of line extenders in coaxial distribution networks, the high density of equipment in headends makes high efficiency a sought- after premium.
Our DOCSIS 3.0 amplifiers address this issue, cutting power consumption by up to 50 percent and slashing the circuit board “real estate” required to employ these devices by up to 80 percent. These GaAs-based amplifiers are designed for use in customer premises equipment to support multi-room deployment as well as advanced in-home distribution architectures such as Ethernet over coax, the Multimedia over Coax Alliance (MOCA) standard, and for FTTH receivers. When these are used in cable hybrid amplifiers and line extender amplifiers they provide lower distortion than ever before, plus very high efficiency and low power consumption.
Taken together, these attributes benefit cable MSOs in terms of reduced operating cost and system complexity. They allow amplifiers to be smaller and more frugal with power. The latter benefit must not be underestimated, given the large numbers of hybrid amplifiers used throughout a system, and the consequent opportunity for considerable annual savings associated with operating costs. The benefit of greater efficiency also makes a difference to amplifiers at the headend, where it translates into reduced cooling requirements.
In short, the hegemony of silicon bipolar devices in hybrid amplifiers is drawing to a close. That’s because this venerable technology that has played an enormous role in the growth of cable since the 1960s is no longer viable in the higher-frequency, higher-performance cable systems
that will drive the industry into the future. In its place will be GaAs devices that are already enjoying rapid deployment, which combine low-cost with high performance, making them well suited to both current and future cable systems.
GaN, which has inherent characteristics that are highly desirable in cable hybrid amplifiers, is currently too expensive for use in most systems. Nevertheless, its role will continue to expand in years to come. It is destined to make an impact, because the combination of process evolution and economies of scale will enable the price reductions necessary for historically frugal-minded cable system manufacturers and operators to begin to adopt this compelling technology.
What’s on tomorrow? There are many variables that will determine the exact path of entertainment distribution to the home, including the possible entry of wireless technologies. However, there are some facets of the industry that will not change. First, the deployment of FTTH has altered the face of TV, data, and voice delivery to the home, giving traditional cable MSOs a true competitor for the first time. Distribution via satellite remains a key player, but it struggles to provide voice and data services, and its future is uncertain in those areas where established cable providers are highly competitive in terms of price and service.
In a competitive environment, the cable industry has little choice but to do whatever is necessary to retain its premier position. FTTH, from Verizon in the US and a growing number of operators in world-wide markets, will continue to gain market share as it is deployed in new regions. Together these two fierce competitors will rely on GaAs and GaN to deliver the highest levels of performance at the lowest cost.
As a result, the market for GaAs- and GaN-based cable hybrid amplifiers will continue to grow. Finally, fiber will inch its way closer and closer to the customer location in HFC systems, driving the growth of optical receivers and other system elements that also rely on III-Vs.
For consumers all of this is great news, since competition drives innovation, and innovation tends to lead to better, more varied services. From any vantage point, the home entertainment industry will be theater at its technological finest — and compound semiconductor technologies are a shoe-in for the leading roles.
The hegemony of silicon bipolar devices in hybrid amplifiers is drawing to a close, because this venerable technology that played an enormous role in the growth of cable since the 1960s is no longer viable
June 2010
www.compoundsemiconductor.net 19
TGA2807-SM: Edge QAM / DOCSIS 3.0 RF amplifier for CATV headend applications. ACPR ~2 dB better than previous generations. Standard 5x5mm QFN offers high- efficiency performance
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127