This page contains a Flash digital edition of a book.
microelectronics  technology


The holy grail for lightwave is Fiber-to-the-Home (FTTH). This high-cost approach


eliminates coaxial cable and all content is delivered directly to the customer through fiber optic cables. In the US, this fiber-based approach has been championed


principally by Verizon, through its FiOS network that competes directly with traditional cable systems in terms of content. It has been very well received, and its limited success has spurred an increase in the speed of entrenched cable MSOs


greatest number of subscribers. The most effective way to do this is to reduce or eliminate components in the system. A classic example of implementing this advice was the introduction of the so-called “power doubler” in the mid 1980s. The power doubler reduced the need for many trunk and ‘bridger’ amplifiers and line extender amplifiers.


The most pervasive mixed technology in the network is employed in fiber optic distribution, which was introduced in the 1980s against a backdrop of a coax-only domain. The appeal of this lightwave technology is its far lower distribution losses compared to coaxial cables, coupled with near immunity to interference. And as this technology has evolved, the number of amplifiers required to cover a given area has diminished.


The upshot has been the removal of costly components from the distribution system, leading to improved signal quality and access to the immense bandwidth required by “triple-play” networks that offer voice, video, and data. In short, the end user is getting closer and closer to realizing the benefits provided by fiber optic technology.


The holy grail for lightwave is Fiber-to-the-Home (FTTH). This high-cost approach eliminates coaxial cable and all content is delivered directly to the customer through fiber optic cables.


In the US, this fiber-based approach has been championed principally by Verizon, through its FiOS network that competes directly with traditional cable systems in terms of content. It has been very well received, and its success has spurred an increase in the speed of new service standards and deployments by entrenched cable MSOs. They responded with a third generation of the Data Over Cable Service Interface specification (DOCSIS), which has been developed by Cable Labs. This not only provides support for IPv6 and IPTV – it also allows customers to tap into data at up to 160 Mb/s in the downstream and 120 Mb/s in the upstream, making it competitive with VDSL and FTTH.


Although FTTH may be the ultimate data delivery technology, the edge that it has over the latest variant of DOCSIS is not a big concern for today’s cable operators.


Verizon’s aggressive deployment of FiOS has created the only real competitor to cable for state-of-the-art performance. An intensive marketing war has ensued between the two entities, with each side scrambling to expose chinks in the armor of the other. While they battle it out, the differences between the two are increasingly narrowing as the cable industry enhances its product offerings.


Linearization RF linearization techniques at the circuit level have held the key to enabling optical transmitters to attain their optimum performance and arguably cement their usefulness in cable distribution. Regardless of the technique employed to amplitude-modulate light, significant distortion arises that hampers the transmission


150mm Gallium Arsenide wafer with photo resist applied in the TriQuint Hillsboro, Oregon high-volume facility


June 2010 www.compoundsemiconductor.net 17


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127
Produced with Yudu - www.yudu.com