This page contains a Flash digital edition of a book.
GEO-6 Regional Assessment for Africa


2.1.5


Climate variability and change


The global concentration of carbon dioxide increased from 280 parts per million in 1850 to 390 ppm in 2011, making greenhouse gases the most likely cause of the observed increase of around 0.5°C in global average surface temperature over the past 50 years (WMO 2015). The increase in temperature also affected other climatic systems, including rainfall patterns.


Rainfall patterns Most areas of Africa lack sufficient observational data to draw conclusions about trends in annual precipitation over the past century (Niang et al. 2014). In addition, in many areas of the continent there are discrepancies between different observed precipitation data sets (Kalognomou et al. 2013; Kim et al. 2013; Nikulin et al. 2012; Sylla et al. 2011). Areas where there are sufficient data show very probable decreases in annual precipitation over the past century over parts of the western and eastern Sahel region in northern Africa. Over the past few decades, the northern regions of North Africa (north of the Atlas Mountains and along the Mediterranean coast of Algeria and Tunisia) have experienced a strong decrease in the amount of precipitation in winter and early spring (Barkhordarian et al. 2013). The Sahara Desert, which receives less than 25 mm per year, shows little seasonal change (Liebmann et al. 2012).


Rainfall over the Sahel has experienced an overall reduction over the course of the 20th century, with a recovery towards the last 20 years of the century (Biasutti 2013; Ackerley et al. 2011; Nicholson et al. 2000). There were a large number of droughts in the Sahel during the 1970s (Greene et al. 2009; Biasutti et al. 2008; Biasutti and Giannini 2006). The recovery of the rains may be due to natural variability (Mohino et al. 2011) or a forced response to increased greenhouse gas concentrations (Biasutti 2013; Haarsma et al. 2005), or to reduced aerosols (Ackerley et al. 2011).


Precipitation in eastern Africa shows a high degree of temporal and spatial variability dominated by a variety of physical processes (Hession and Moore 2011; Rosell and Holmer 2007). Funk et al. (2008) indicate that over the past


30


three decades rainfall has decreased over eastern Africa between March and May/June. The suggested physical link to the decrease in rainfall is rapid warming of the Indian Ocean, which causes an increase in convection and precipitation over the tropical Indian Ocean and thus contributes to increased subsidence over eastern Africa and a decrease in rainfall during March to May/June (Funk et al. 2008). Similarly, Lyon and DeWitt (2012) show a decline in the March-May seasonal rainfall over eastern Africa. Summer (June–September) monsoonal precipitation has declined throughout much of the Great Horn of Africa over the past 60 years (during the 1948–2009 period; Williams et al. 2012) as a result of the changing sea level pressure (SLP) gradient between Sudan; the southern coast of the Mediterranean Sea and the southern tropical Indian Ocean region (Williams et al. 2012).


Over southern Africa a reduction in late summer precipitation has been reported over the western parts, extending from Namibia, through Angola, and towards the Congo, during the second half of the 20th century (Hoerling et al. 2006; New et al. 2006). The drying is associated with an upward trend in tropical Indian Ocean sea surface temperatures (SSTs). Modest reduction trends in rainfall are found in Botswana, Zimbabwe, and western South Africa. Apart from changes in total or mean summer rainfall, certain intra-seasonal characteristics of seasonal rainfall have changed, such as onset, duration, dry spell frequencies, rainfall intensity, and delay of rainfall onset (Kniveton et al. 2009; Tadross et al. 2009).


Changes in the distribution and magnitude of extreme rainfall events observed in many parts of Africa are associated with both climate change and variability (Williams et al. 2010), and these changes vary between sub-regions (Omondi et al. 2013; van de Giesen et al. 2010; Muthama et al. 2008). Desertification, desert encroachment and an alteration of hydrological regimes have been observed in several African ecosystems and regions (Odjugo 2010; Descroix et al. 2009; IPCC 2007). A shortage of water can have a damaging impact on vegetation, agricultural production and livelihoods, as

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215
Produced with Yudu - www.yudu.com