This page contains a Flash digital edition of a book.
Industry  Gases


1.Availability is limited to several regions including North America, northern Europe and Japan. 2.SMR requires availability of Natural Gas 3.Electrolytic H2generators consume large quantities of electricity


membranes to move freely against each other, thereby contributing to long-term stress of the tubes. Preventing membranes from coming into contact also leads to a free flow of gas and prevents tube damage.


To demonstrate the practical benefits of our palladium technology, we have developed automated, accelerated-life-testing systems to replicate extreme operating conditions. Membranes were pressure- and temperature-cycled to simulate the stresses possible from long-term operation. The goal was to confirm a minimum cycle lifetime of 10,000 – equivalent to 10 years with 3 on/off cycles per day. This benchmark, which is well above typical operating conditions, is always met with membranes that pass incoming inspection (see Figure 4). In fact, some membranes that failed inspection still show excellent lifetimes. This means that our inspection methods may eliminate ‘good’ membranes. However, they ensure that no accepted membranes fail the cycle test.


We subjected our sample membranes to thermal cycling to validate flow performance and stability over time. The result: Confirmation of the effectiveness of our membrane test methods to identify and remove membranes with micro-defects prior to assembly.


Encouragingly, our test also showed that the new micro- channel membranes provide improved durability under the most hostile operating conditions. Our 9000MZ and 9000MS high-flow purification systems are now incorporating the new membrane. These purification systems have been manufactured with production and quality procedures that ensure a consistent operating environment with stable operation for many years. The compact array of membranes provides a high flow capacity in a very compact package. A single vessel measuring 6” x 24” that previously purified up to 200 slpm can now flow 600 slpm. The compact package also reduces power consumption, and in addition it allows savings in required floor space and HVAC sizing, important considerations for the larger semiconductor fabrication facilities in Asia.


Through analysis of raw materials, assembled systems and resulting outlet gas purity, it has been possible to improve the quality of the hydrogen supply so that impurities are consistently below 0.1 ppb (100 ppt). This exceptional level of purity predominantly stems from proprietary manufacturing processing for preparing and passivating stainless steel, which have reduced sources of carbon and moisture that can contribute impurities downstream of the palladium membranes. Thanks to this advance, we can now guarantee a start-up purity of less than 100 ppt for all impurities. In comparison, typical specifications from traditional palladium purifiers offer impurities of less than 1 ppb, and this is only assured after a lengthy start-up purging at a minimum 20 percent of rated flow.


Benefits associated with our micro-channel technology are by no means limited to LED chipmakers: They are also a great assistance to producers of photovoltaics, polysilicon devices and fuel cells. Improvements in the performance of all these devices are eagerly anticipated, and our hydrogen-purifying technology should help to unlock that promise throughout the remainder of this decade.


© 2012 Angel Business Communications. Permission required.


Hydrogen fuel cells


Figure 4: Membrane life cycle test confirms 10,000 cycle minimum lifetime for all membranes that passed new


inspection procedures


40 www.compoundsemiconductor.net January/February 2012


The Department of Defense is interested in developing high-quality hydrogen sources for fuel cells. These devices are incredibly energy efficient, and can generate twice as much energy per gallon of fuel as combustion-based generators. The challenge is that military fuel supplies are high in sulphur contamination, an impurity that drags down fuel cell performance. A better, more durable method for separating hydrogen for fuel cells is needed to unlock the door to auxiliary powering of vehicle, plane, ship, platoon and field installations.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241