This page contains a Flash digital edition of a book.
news digest ♦ Solar


With installations on four continents around the world, Soitec’s CPV technology has proven to be one of the most efficient and most environmentally friendly solar power technologies. It demonstrates unique cost competitiveness compared to other solar technologies, largely due to its higher production yields at peak times and lower construction and maintenance costs. In addition, CPV technology’s abilities to operate without cooling water, to withstand hot ambient temperatures and to accommodate the dual use of land with minimal environmental impact make it perfectly suited for use throughout the desert southwest.


Soitec employs a distributed manufacturing model which locates CPV module factories close to its customers to provide the most efficient and environmentally beneficial green power. The distribution model also calls for a large percentage of local content and local job generation.


“Soitec’s new facility will create hundreds of well-paying jobs and build on San Diego’s growing reputation as one of the world’s leading clean-technology clusters,” commented San Diego Mayor Jerry Sanders. “We are so honoured and proud to welcome Soitec to the San Diego community, and I know that San Diego’s collaborative business community will continue to work with Soitec to ensure the company’s success and prosperity.”


CPUC Commissioner Timothy Simon also commented during Soitec’s dedication event. “I encourage Soitec to continue to work with the other utilities in our state and in our nation so we can ensure that this very important technology is doing its best to help us reduce greenhouse emissions,” said CPUC Commissioner Simon. “I look forward to working with President Peevey and my fellow commissioners to ensure that all needed essentials to make this project successful continue to have the support of the CPUC.”


Governor Brown noted, “I’m glad to be here 178 www.compoundsemiconductor.net January / February 2012


A picosecond terahertz pulse causes an avalanche of excitons to burst forth from GaAs (Credit:Courtesy Tanaka Lab, Kyoto University iCeMS)


Working with GaAs, the team observed that exposing the sample to a terahertz (1,000 gigahertz) range electric field pulse caused an avalanche of electron-hole pairs (excitons) to burst forth. This single-cycle pulse, lasting merely a picosecond (10-12 s), resulted in a 1,000-fold increase in exciton density compared


for the dedication of Soitec’s manufacturing plant. The expansion of clean energy businesses is a direct result of legislation mandating that one-third of California’s electricity come from renewable sources by 2020. That’s a goal and we’re going to meet it. In fact, we are going to do better.”


Terahertz pulse increases electron density in GaAs by a thousand


These findings may lead to the development of ultra-high-speed transistors and high-efficiency photovoltaic cells using gallium arsenide


Researchers at Kyoto University have made a breakthrough with broad implications for semiconductor-based devices.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241