This page contains a Flash digital edition of a book.
Novel Devices ♦ news digest nl204043y


Cracking thin-solid GaN films into nanobelts


IMRE researchers reveal a novel technique for fabricating gallium nitride based nanobelts with enhanced functions and applications


Researchers from Institute of Materials Research and Engineering (IMRE), Singapore, claim to have fabricated InGaN/GaN hetero- structured nanobelts that set a new benchmark for performance.


The team can control the structure and doping of these belts, which makes them more attractive candidates for piezotronic and optoelectronic devices.


It is possible to make the nanobelts as long as desired, and they can be arranged in parallel arrays for integration into devices.


Fabrication involves MOCVD growth of an InGaN/GaN bilayer film that has an asymmetric elastic stress. When the bilayer film is detached from its substrate, the strain relaxation of the bilayer film drives itself to curve and crack along a certain direction, guided by the asymmetrically stored stress.


of the bilayer film, ZnO sacrificial template was introduced before the MOCVD growth of InGaN/GaN heterostructure.


MOCVD deposition enables the control of the doping and thickness of the InGaN/GaN bilayer. The ZnO template was first epitaxially grown on an r-plane sapphire substrate by rf- magnetron sputtering. A 50 nm GaN film was then epitaxially grown by MOCVD on the ZnO sacrificial template.


To improve the crystal quality, magnesium- doping was employed as the surfactant to enhance the mobility of the adatoms on the growing surface. The structure was ended by a 150 nm InGaN thin film grown on the GaN layer, forming the InGaN/GaN bilayer. The in- plane asymmetrical stress induced by ZnO and InGaN was stored in the InGaN/GaN bilayer. When the ZnO buffer layer was laterally etched off, the bilayer was detached and cracked.


Guiding by the asymmetrical stress, the cracks propagate within the bilayer along the c-axis (lying parallel to the surface plane), forming the parallel nanobelts array. The length of the nanobelts can be varied, determined by the sample size while parallel nanobelts array can be transferred to any desired substrates with the help of wax.


The crack density and the width of the InGaN/ GaN nanobelts are simply controlled by the amount of elastic stress stored in the bilayer film, which is dependent on the indium composition within the InGaN layer and the InGaN-to-GaN thickness ratio.


Further details of this work will be described in a paper accepted for publication by H. F. Liu et al inNano Energy.


To asymmetrically store the elastic stress, r-plane sapphire was selected as the substrate, so that thec-axis of the GaN-related layers lies in the growing plane (i.e., parallel to the surface plane). For easy detachment


January / February 2012 www.compoundsemiconductor.net 235


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241