Community‐based livestock protection 541
enclosures varied across the three communal areas (χ2 = 93.52,df = 2,P,0.001), with Mabale having the greatest number of incidents inside kraals (32%). The majority of lion attacks on livestock occurred during the night (61%) and outside kraals (83%).
Long Shields programme activities
During 2013–2017, the programme sent a total of 2,262 early warning messages (mean = 38 per month) alerting farmers to approaching lions. Fifty-one farmers were assisted in recovering missing livestock (n = 386 livestock). Across the same period 21 lionswere hazed to encourage them to return into the protected area on a total of 116 occasions (mean = 5.5 chases per lion). More than half of the chases (53%) were in Tsholotsho, followed by Mabale (40%) and Victoria Falls (7%). One hundred and four farmers approached Community Guardians seeking assistance to reinforce their kraals during this period.
Effectiveness of the Long Shields programme in limiting livestock losses
Mean livestock losses to lions were significantly reduced in the period after initiation of the Long Shields programme in participating villages (likelihood ratio test for GLMM: χ2 = 98.63,df = 6,P,0.001). Mean livestock losses to lions per village per year for participating farmers in Tsholotsho decreased from 19.27 before to 12.73 after the programme was implemented. In Victoria Falls, this was 17.55 for participating farmers before vs 11.23 after pro- gramme implementation. In Mabale, however, mean live- stock loss to lions for participating farmers increased from 13.44 per village per year before to 25.44 after programme implementation. (Fig. 2). In addition, mean livestock losses- for non-participating farmers in Tsholotsho decreased slightly after the programme was implemented, but the de- crease was less pronounced than for participating farmers (Fig. 2).
Lion mortality before and after programme implementation
During 2008–2017,a total of 46 lions (males = 26; females = 20) were killed in conflict-related incidents inMabale (n=13), Tsholotsho (n = 23)and Victoria Falls(n = 10). Of these, 63% (n = 29,mean = 5.8 lions per year) were killed before (2008– 2012)and 37%(n = 17,mean = 3.4 lions per year) after the Long Shields programme was implemented (2013–2017). Thus, the number of lions killed in retaliation declined by 41%. Most of these lions (67%, n = 31)wereshotas problem animals by officials of national parks authorities or rural dis- trict councils. Farmers were directly involved in the illegal
FIG. 2 Mean number of livestock lost to lions per village per year during 2008–2017 before (2008–2012) and after (2013–2017) the introduction of the community-based Long Shields programme, for farmers participating (treatment) and not participating (non-treatment) in the programme. Error bars represent standard errors (SE).
killing of 15 lions, using either snares (n = 12), spears (n = 2) or poison (n = 1). More collared lions were killed in Mabale than elsewhere (Table 1). The proportion of lions illegally killed by farmers declined significantly after the implementa- tion of the programme (χ2 = 5.33,df = 1,P = 0.02), but the number of lions legally shot by officials remained unchanged (Table 1). There was only a weak association between the number of livestock killed by lions and the number of lions killed in retaliation by farmers (rs = 0.54,df = 8,P = 0.11).
Discussion
Our findings indicate that farmer participation in the Long Shields programme is a significant factor in reducing live- stock loss to lions. Since the inception of the Long Shields programme in 2013, participating farmers in Tsholotsho and Victoria Falls recorded an overall decrease in livestock loss to lions compared to non-participating farmers. We suggest this is because participating famers were alerted to approaching lions via the Long Shields programme and con- sequently moved their livestock to areas with lower depre- dation risk. In addition, using vuvuzelas to haze lions that crossed over the Park boundary into village settlements, en- couraging farmers to reportmissing livestock to prevent at- tacks, and assisting them to repair livestock kraals to avoid night-time predation may have also contributed to a decline in livestock depredation.
Oryx, 2022, 56(4), 537–545 © The Author(s), 2021. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605321000302
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164