search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
620 A. Balestrieri et al.


TABLE 3 Modelling scenarios for assessing the viability of the otter population reintroduced on the River Ticino, with demographic input data for Vortex simulations.


Biological parameters Inbreeding depression


State variables


Reproductive system Age at first offspring


Max. age of reproduction Max. lifespan


Max. number of broods per year Max. number of progeny per year


Sex ratio at birth % breeding at low density


% breeding at carrying capacity % adult females breeding Reproductive rates


Age-specific mortality rates (%) 0–1 year 1–2 years 2–3 years .3 years


Number of types of catastrophes Frequency of catastrophic events (%)


Data values Scenario 1 default


default


Scenario 2 default


polygynous polygynous polygynous Kruuk (2006) 3 years 10 years 12 years 1 3


default 3 years


10 years 12 years 1 3


1:1 70 20


1:1 70 20


default


default 2 years


10 years 12 years 1 2


1:1 60 20


{70−[(70−20) × (N/K)2]×[N/(1 +N)]} default


default


8 (F), 14 (M) 10 (F), 5 (M) 16 (F), 16 (M) 8 (F), 10 (M) 10 (F), 4 (M) 12 (F), 12 (M) 8 (F), 6 (M) 3 (F), 2 (M) 12 (F), 12 (M) 1


3


Severity for reproduction and survival (%) 0.2–0.75 % of males .2 years old in breeding pool 70 Population size (N0)


Carrying capacity (K) Supplementation


Initial rate of increase λ


1 3


0.2–0.75 70


50


1 3


0.2–0.75 70


2F, 2 M 2 F, 2 M 2F, 2 M 3F, 3 M 3 F, 3 M 3F, 3 M 50


50


2F, 2 M 2 F, 2 M 2F, 2 M 1.14–1.2


1.07–1.13


used package for modelling reintroduced populations (Armstrong & Reynolds, 2012) and guiding conservation initiatives (Hamilton & Moller, 1995; Gaona et al., 1998). Vortex is an individual-based, stochastic model that applies Monte Carlo simulations to model the dynamics of popula- tions by stepping through a series of events that describe both deterministic and stochastic processes (Lacy, 1993). Simulations allow the probabilistic assessment of (1) pop- ulation size and genetic variation of extant populations, (2) extinction risk at specified intervals, and (3) mean time to extinction of those simulated populations that became extinct. Weretrieved biological parameters from the available lit-


erature (Table 3; Larsson & Ebenhard, 1994; Ansorge et al., 1997; Ebenhard, 2000; Hauer et al., 2002; Kruuk, 2006; Kuhn & Jacques, 2011), and assessed carrying capacity based on otter density in southern Italy (Prigioni et al.,


1.14–1.23


2006b). To account for the uncertainty about the number of otter pairs released and the possibility of unintentional supplementation by otters escaped from two enclosures in the 2–3 years following the start of the reintroduction pro- ject, we set the population size (N0) at three different values (1–3 pairs) for each scenario and simulated the adding of a pair of individuals per year at time t0 + 1 and t0 + 2 (Table 3). The risk of a catastrophe was set at 3%, assuming that excep- tional floods, which may occur at intervals of c. 30–35 years (Cattaneo et al., 2000), could primarily affect the survival of juveniles. For each scenario, we ran 500 simulations over a 100-year period, defining extinction as the point when one sex was eliminated. We conducted sensitivity tests for uncertain parameters,


to examine the effects of a range of values for each parameter on the probability of otter survival. We tested inbreeding depression, quantified as the number of lethal equivalents


Oryx, 2022, 56(4), 617–626 © The Author(s), 2021. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605321000107


1 F, 1 M 1 F, 1 M 1 F, 1 M Uncertainty on the number of reintroduced pairs


0.18–0.20 otters/km (Prigioni et al., 2006b)


1 F, 1 M 1 F, 1 M 1 F, 1 M Eventually escaped individuals (J. Conroy, in: Prigioni et al., 2009)


Scenario 3 default


Sources O’Grady et al. (2006)


Kuhn & Jacques (2011) Ansorge et al. (1997) Ebenhard (2000)


2.3–2.6 (Larsson & Ebenhard 1994; Hauer et al., 2002) Ansorge et al. (1997)


Ansorge et al. (1997), Hauer et al. (2002)


Normal distribution of the N of offspring per female per brood


24 (F), 34 (M) 52 (F), 52 (M) 17 (F), 17 (M) Ansorge et al. (1997), Larsson & Ebenhard (1994)


Exceptional flood October 2000 (Cattaneo et al., 2000)


Return period: 30–35 years (Cattaneo et al., 2000)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164