search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Leopard density 519


PLATE 1 A camera trap captures a male leopard Panthera pardus travelling in the early morning in Kafue National Park, Zambia.


Prey depletion is apparent in many ecosystems affected


by illegal offtake (Bolger et al., 2008; Fa & Brown, 2009; Western et al., 2009; Ripple et al., 2015). Because this type of offtake is unregulated, it is often unsustainable, driving extensive wildlife population declines and disproportionate- ly affecting larger-bodied herbivores (Wilkie & Carpenter, 1999; Fa et al., 2000; Creel et al., 2018; Vinks et al., 2020). Herbivore declines, in turn, are widely thought to be a strong driver of carnivore declines in sub-Saharan Africa (Midlane et al., 2014; Rosenblatt et al., 2016, 2019; Creel et al., 2018; Vinks et al., 2021). Western Zambia’s Greater Kafue Ecosystem, comprising


Kafue National Park and surrounding Game Management Areas, has been identified as a potential leopard stronghold, on the basis of historical data (Purchase et al., 2007). Little is known about the current status of leopards in the Greater Kafue Ecosystem, although this system now faces extensive anthropogenic pressures from encroachment (Watson et al., 2014) and illegal offtake (Overton et al., 2017), with effects on the large herbivore and carnivore guilds (Creel et al., 2018; Vinks et al., 2020; Vinks et al., 2021). Specifically, the long- term decline of large-bodied prey species has led to prey base homogenization, niche compression, and increased niche overlapwithin the large carnivore guild, including of leopards and lions Panthera leo (Creel et al., 2018). The consequences of these changes for the conservation of subordinate compe- titors such as leopards cannot be evaluated without data on density and demography.More broadly, reliable and precise estimates of population size and vital rates (survival and reproductive parameters) are needed to design and evaluate actions for the conservation and management of leopard po- pulations, especially in protected areas facing anthropogenic pressures suspected of causing declines (Jacobson et al., 2016; Rosenblatt et al., 2016). Individual leopards are identifiable through their unique markings (Plate 1; Miththapala et al., 1989), facilitating


effective monitoring with passive camera trap arrays (Balme et al., 2009a,b; Goldberg et al., 2015; Rosenblatt et al., 2016; Balme et al., 2019). Camera-trap data have been used to estimate population densities in many parts of the species’ range (Balme et al., 2019). However, substan- tial gaps still exist in our understanding of the drivers of leopard population dynamics (Balme et al., 2014; Jacobson et al., 2016; Stein et al., 2020), particularly with regard to the consequences of prey depletion. Although the loss of prey is generally expected to cause carnivore declines, the densities of dominant competitors (especially lions) are more strongly correlated with prey density than the dens- ities of subordinate competitors (Van Orsdol et al., 1985; Laurenson, 1995; Creel & Creel, 2002). Because a decrease in prey density is likely to reduce the density of dominant competitors, its net effect on the survival and population density of leopards is difficult to predict. Prediction of this effect is further complicated by studies suggesting that com- petitive limitation of leopards by dominant competitors is weaker (Rosenblatt et al., 2016; Balme et al., 2017; Miller et al., 2018) than for other competitive subordinates such as the African wild dog Lycaon pictus (Creel & Creel, 2002; Swanson et al., 2014). Here, we use data froma 7-year camera-trap study of leo-


pards in north-central Kafue National Park to fit capture– recapturemodels to provide unbiased estimates of population density and sex-specific apparent survival rates, account- ing for imperfect detection. By comparing our estimates of density and apparent survival to data from other leopard populations,we evaluate the consequences of prey depletion in the Greater Kafue Ecosystem.


Study area


We established a camera-trap grid in north-central Kafue National Park west of the Kafue river, and along the Lufupa river (Fig. 1). Kafue lies in western Zambia, and is the country’s largest protected area at 22,319 km2. Kafue and the surrounding Game Management Areas comprise the 66,000km2 GreaterKafue Ecosystem, which is dominated by miombo woodland (Brachystegia and Julbernardia spp.) with a mosaic of savannah grassland, riverine woodland, mixed acacia woodland, termitaria woodland, and seasonal- ly inundated grasslands. The region experiences a rainy sea- son with extensive flooding during December–April and a dry season during May–November. Carnivore prey are de- pleted in Kafue, and densities of larger-bodied herbivores are depressed relative to smaller species. To evaluate the impacts of both prey depletion and interspecific competi- tion with lions, we focused on the central portion of Kafue, forwhich there arewell-described lion and herbivore densities and dynamics from long-term studies (Vinks et al., 2020, 2021).


Oryx, 2022, 56(4), 518–527 © The Author(s), 2021. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605321000223


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164