search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
520 M. A. Vinks et al.


FIG. 1 Study area in Kafue National Park, Zambia. Buffer zones identify the areas effectively sampled based on the mean maximum distance moved (MMDM; 538 km2) and half of the mean maximum distance moved (HMMDM; 228 km2).


Methods


Study design We used a grid of camera traps to photograph individual leopards and used a combination of open and closed capture–recapture models to estimate population size, population density, and sex-specific annual survival rates. Cameras were placed within a square grid that was random in its origin and orientation, following Rosenblatt et al. (2016). Grid spacing followed established procedures for large felids to meet the assumptions of closed capture– recapture models (Otis et al., 1978; Karanth & Nichols, 1998; Balme et al., 2009a,b). We based grid cell size on the smallest home range estimate (14 km2) for an adult female leopard in Zambia’s Luambe National Park (Ray, 2011), and spaced camera-trap sites 2.5 km apart (Fig. 1). This spacing ensured several sites within the home range of each individ- ual (Karanth & Nichols, 1998), to increase the probability of detection. We established 15 unbaited camera-trap sites (Fig. 1), se-


lecting sites by searching for leopard tracks within 100 mof each (uniformly distributed) grid point (Silver et al., 2004). If we encountered no tracks, we selected the most active game trail within 100 m of the point (Rosenblatt et al., 2016). Although vegetation varied between sites, we ex- pected leopards to use all vegetation types (Balme et al., 2007). At each site we placed two Reconyx Hyperfire PC800


cameras (Reconyx, Inc., Holmen, USA) opposite one an- other, to photograph both sides of passing leopards, and at- tached each camera to a tree at a height and angle selected to


maximize the likelihood of being triggered by leopards (Rosenblatt et al., 2016). To download images, we visited sites on foot in small groups to minimize our potential effect on subsequent detections. Individuals were identified by spot patterns, and sex was determined based on genitalia and sexually dimorphic traits such as body size, head size, and the prominence of the neck dewlap (Balme et al., 2012). We did not assign ages because of the limitations of image quality and the difficulty of aging leopards accurately (Balme et al., 2012).


Modelling abundance and survival


Our sampling was restricted to 6 months (June–November) annually, when conditions allowed for consistent monitor- ing across the entire study site. We deployed cameras in a random rotation across three sections within the study area (Karanth, 1995). Each section consisted of 5 sites and was sampled for 20 days on two occasions (40 days total) in each 6-month period. To estimate survival rates, we cre- ated encounter histories for each individual by pooling de- tections across sections for each 20-day period (see below). To estimate abundance, we divided each 20-day primary occasion into two 10-day secondary occasions (see below). To avoid double-counting individual leopards, we created encounter histories using only right-side photographs (Rosenblatt et al., 2016). Our study was designed to estimate population size, an-


nual survival, detection and redetection probabilities, and rates of temporary emigration, using an extended robust design model (Pollock, 1982;Kendall et al., 1995), which was used for data from the same sampling design in another


Oryx, 2022, 56(4), 518–527 © The Author(s), 2021. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605321000223


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164