This page contains a Flash digital edition of a book.
72 SPECTROSCOPY


ion is released in MS/MS spectrum it can be correlated to a particular sample source6


.


Two isobaric tag families are commercially available. Te first is the Tandem Mass Tag (TMT) reagent family which includes TMTzero, TMTduplex (reporting group mass 126 and 127 Da), TMTsixplex (reporting group mass 126 to 131 Da) and TMT10plex sets that are designed for a rapid and cost- effective evolution from method development to high-throughput protein quantitation.


Te mass reporter part is segregated from a mass normalisation moiety via a fragmentation vulnerable linker. Te TMTzero tag is suitable for testing and optimisation of sample preparation, fractionation and mass spectrometric fragmentation for peptide identification through reporter detection without using the more costly isotope-labelled tags1


.


three labelling methods discussed previously produce versions of each analysed peptide with mass variation at a particular amount. Te two forms will appear as two peaks with a certain mass difference in the mass spectrum.


Te mass-difference model is limited to a binary (2-plex), ternary (3-plex) or tertiary (4-plex) set of tags. Because of the limited plex numbers, comparison of multiple states cannot be achieved in one experiment. Tus, a multiplexed set of reagents for quantitative protein analysis has been developed.


Isobaric tagging is achieved by using chemical moieties or tags which are identical in mass to labelled peptides so that all derivatised peptides are isobaric, chromatographically indistinguishable and yielding a single peak in the mass spectrum for both samples (sick and non- sick samples).


www.scientistlive.com


However, the relative abundances of the isobarically tagged peptides are revealed when the moieties fragment during MS/MS experiment to release reporter ions with different masses5


.


Te amine-reactive group of the tag (N-Hydroxysuccinimide ester- activated compounds) covalently binds to the peptide amino terminus and free amino termini of lysine residues of peptides and proteins with high efficiency.


In addition to the reactive group, the isobaric mass tags are designed to include two parts: a reporter or signature region and a mass normalising region. Te total mass of the reporter region and the normalising moieties is the same in all versions of the isobaric reagent, but the individual weights change. Consequently, when the reporter


Te other family is isobaric tags for absolute and relative quantification (iTRAQ), with up to 8-plex versions available with the following reporter ions/ isobaric tag values: 113/192, 114/191, 115/190, 116/189, 117/188, 118/187, 119/186, and 121/184 ensuring that all tags have a same total mass.


Conclusion Quantitative mass spectrometry protein analysis allows the comparison of protein expression between different states of biological systems. Te recent advances in this field combined with bioinformatics technologies, which are required to interpret complex data, are vital for biomarker discovery and drug target validation and will lead to clinical advantages for years to come.


Osama Chahrour and John Malone are with Almac Sciences, Craigavon, Northern Ireland, UK. www.almacgroup.com


Fig. 2. (Left) ICAT reagents workflow.


REFERENCES: 1


Nakamura, T., and Oda, Y. (2007) Mass spectrometry- based quantitative proteomics. Biotechnol. Genet. Eng. Rev. 24,


147–164; 2


Ong, S.-E., and Mann, M. (2005)


Mass spectrometry-based proteomics turns quantitative.


Nat. Chem. Biol. 1, 252–62; 3


Petriz, B. A., Gomes, C. P., Rocha, L. A. O., Rezende, T. M. B., and Franco, O. L. (2012) Proteomics applied to exercise physiology: a cutting-edge technology. J. Cell.


Physiol. 227, 885–98; 4


Nesvizhskii, A. I., Vitek, O., and


Aebersold, R. (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 4,


787–97.; 5


212–7; 6.


Domon, B., and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science 312,


Gingras, A.-C., Gstaiger, M.,


Raught, B. & Aebersold, R. (2007) Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8, 645–54.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120