This page contains a Flash digital edition of a book.
INDUSTRY LASERS


impinges on the grating with an incidence angle that is off from perpendicular. If this angle is optimal, any back-reflection from the grating to the laser is eliminated.


With our InP-based, horizontal-cavity surface-emitting laser that features etched facets at an angle off from 45°, the laser beam emerges at an angle to the gratings on the silicon photonics chip (see Figure 2). Light is then directed to the narrow silicon photonics waveguide through the gratings and an adiabatic taper.


A cleaved facet laser, packaged with a ball lens and a reflector in a hermetic enclosure, is also capable of directing the laser emission at the right angle to ensure a high intensity of light in the narrow waveguide (see Figure 3). If this cleaved-facet laser package is mounted to the silicon photonics chip, a hermetic package is not required around the combined chip. Although this means that additional optical elements beyond the laser are required, on the plus side only a relatively small hermetic package is needed around the cleaved facet laser.


It is not yet clear whether a hermetic package is needed for a hybrid silicon laser that is employed to couple light into a narrow waveguide on the silicon photonics chip (see Figure 4). If it’s not needed, this approach that Intel introduced is attractive, given that it is also alignment-free when the InP wafers are bonded to the silicon wafer.


Another issue to consider is the significant difference in the dimensions of the different InP lasers being considered for silicon photonics. Cleaved and etched facet laser chips are relatively small, with typical lengths and widths of around 300 µm and 250 µm, respectively. This means that they use up just 0.075mm2 of InP real estate, which is several orders of magnitude less than that of the hybrid laser – it is expected to have similar dimensions to the silicon photonics chip, such as 5 mm by 6 mm. However, this issue may be alleviated with an InP die attach process that involves using glass glue to bond the InP gain chips, rather than the full InP wafer, to the silicon photonics wafer.


Our survey of the three different light sources for silicon photonics – cleaved lasers, hybrid lasers, and etched fact


One of BinOptics’ vacuum systems used in the production of etched facet lasers.


lasers – shows that they all have some pros and cons. The ideal approach will ultimately depend on the desired final function, and how these technologies progress as silicon photonics continues to gain popularity in the computing and datacom worlds. Whichever way you look at it, silicon photonics has a bright future, and it will be exciting to witness how this technology transforms the world as the digital age continues to unfold.


© 2014 Angel Business Communications. Permission required.


March 2014 www.compoundsemiconductor.net 61


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164