This page contains a Flash digital edition of a book.
TECHNOLOGY SiC POWER ELECTRONICS


Figure 5. Forward characteristics for a 1 kV SiC SBD, a 20 kV SiC SBD, and a 20 kV SiC pin diode with two different carrier lifetimes (simulated). For 20 kV applications, a pin diode with sufficiently long carrier lifetime is the most promising


Figure 6. Eliminating defects increases the carrier lifetime in SiC. Lifetimes are revealed by microwave-detected photoconductance decay measurements, which show the improvement in a 220 μm-thick epilayer that results from the defect-elimination process


ultra-high-voltage SiC device. To prevent this from impacting device performance, the structure and the doping profile of the Al+


-implanted junction-


termination-extension (JTE) region have to be carefully designed and optimised. If the aluminium doping concentration is too low, severe electric field crowding occurs near the mesa edge; but if this doping is too high, crowding is present at the outer edge of the JTE region.


We address this issue with a ‘space-modulated’ JTE structure featuring multiple rings formed inside a reduced surface field-type, Al+


JTE region. By modulating the widths and spacing of individual rings, the effective JTE dose gradually decreases as it progresses toward the outer edge. In turn, this minimises electric field crowding and provides a wide optimum JTE dose range. Device simulations enabled optimisation of the structure and the doping profile of the JTE region (see Figure 8).


Our most recent pin diodes have a 260 μm-thick voltage-blocking layer. Mesa diameter and the JTE


-implanted


length are just 300 μm and 1050 μm, respectively – that’s because the aim of producing this diode is


to provide a proof of the concept and not a power device capable of handling very high currents.


Device testing involved immersion of the diode in the dielectric liquid Fluorinert, and on-wafer testing with a DC voltage sweep (see Figure 9). Determining device performance is not easy, because no suitable commercial UHV testing systems are available at present, and we had to address several technical issues related to cable connections and the probe configuration to prevent air sparking.


Our devices can withstand voltages up to 26.9 kV (see Figure 10), the limit of our measurement set-up, and they set a new benchmark for any solid-state device. We estimate that the real breakdown voltage is more than 30 kV, but we will only be able to prove this after improving our measurement system. On-resistance of this diode is just 19 mΩ cm2


, compared with 430 mΩ cm2


Figure 7. Fabrication of the SiC pin diode involved epitaxial growth of a very thick n-type voltage-blocking layer and a highly-doped p-type emitter, followed by diode isolation that resulted from formation of an improved bevel mesa with a rounded bottom. This alleviates electric field crowding near the junction edge


56 www.compoundsemiconductor.net March 2014


for a SBD (no carrier injection) processed on the same wafer without a p-type anode. This pair of results underlines how the conductivity modulation effect can slash the resistance of a very thick, lightly-doped layer. The original carrier-lifetime enhancement technique has helped to realise a low on-resistance in our devices. Analysing the resistance components with our


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164