This page contains a Flash digital edition of a book.
TECHNOLOGY SUBSTRATES


Scaling semi-polar substrates


Growth on patterned sapphire can lead to large, low-cost semi-polar substrates


By KEISUKE YAMANE FROM YAMAGUCHI UNIVERSITY, JAPAN


ONE-FIFTH OF THE WORLD’S ELECTRICITY is consumed by lighting. So, to try and trim carbon footprints, many companies and governments are funding efforts to increase the efficiency of the light bulb.


Much interest has been devoted to solid-state lighting, thanks to its potential to deliver efficacies of several hundred lumens-per-Watt, which is far higher than the best fluorescent sources of today. At the heart of this type of light source is an InGaN-based LED that typically emits in the blue and pumps one or more phosphors of longer wavelengths. White light results from colour mixing.


Most InGaN-based LEDs are fabricated on a polar {0001} (c-plane) GaN layer, which is grown on a c-plane sapphire substrate. This platform is cost-effective, and the growth technique for forming the LED epistructure on it is refined and widely used in high-volume fabs. In contract, high-performance nitride devices, such as laser diodes or very high efficiency LEDs, are fabricated on bulk GaN substrates. The reason for this is that deposition on a native substrate gives the best device performance, because it minimises interface effects and defect formation.


Regardless of the substrate, LEDs formed with c-plane GaN-based material


have a major impediment to high performance: separation of the carriers by a piezoelectric field (see Figure 1(a)). This field pulls apart electrons and holes, reducing the likelihood for radiative recombination and thereby impairing efficiency.


To reach longer wavelengths, indium content is increased, but this also increases the strength of the unwanted


electric field in the device – and is the primary reason for the low luminous efficiency of green light-emitting devices.


An attractive option for addressing these fields is to turn to a new approach for band engineering, which involves growth on different planes of GaN. Piezoelectric fields are absent on non- polar planes, while drastically cut on semi-polar planes, and in both cases this


Figure 1. Band alignment of an InGaN/GaN quantum well structure for polar and nonpolar/semi- polar planes. Conventional InGaN quantum wells are grown in the c-direction (left). The InGaN quantum well gets compressively strained due to the different lattice constants of the two materials. This leads to an internal piezoelectric field, resulting in a tilt of the energy band. Consequently, there is a spatial separation between the electrons in the conduction band and the holes in the valence band. Moreover, the effective band gap is slightly reduced. This effect is called the quantum confined Stark effect. Removing the internal electric field allows the electron and holes to spatially overlap perfectly, resulting in efficient recombination (right)


48 www.compoundsemiconductor.net March 2014


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164