This page contains a Flash digital edition of a book.
INDUSTRY COATINGS


Enhancing coating uniformity for electron beam lift-off


To form the best films, users of electron beam evaporators must understand how uniformity is influenced by the number of axes for substrate rotation, the insertion of shadow masks and the distance between source and substrate.


BY PHILIP GREENE FROM FERROTEC, TEMESCAL DIVISION


IN VERY GENERAL TERMS, compound semiconductor devices are all fabricated in the same way. Whether it is LEDs, lasers, solar cells or electronics, production always begins with deposition of epitaxial layers onto a substrate, followed by processes that add metal films and contact wires to construct a chip that is housed in a suitable package.


A standard technique for depositing a metal on a compound semiconductor is electron beam evaporation. It may be performed as part of a lift-off process, which involves deposition on a patterned sacrificial layer that is then removed to leave a metallic film on part of the surface.


Strengths of electron-beam evaporation include a high effective deposition rate, which enables acceptable deposition times, and a highly directional source


Figure 2. In a single-axis rotating dome, deposition without a mask produces variations in metal film thickness of +/-12.8 percent to +/-24 percent, depending on material


that limits detrimental sidewall coverage. Very high-quality films are possible by carrying out electron beam evaporation under a high vacuum: This leads to very low levels of incorporation of background gas contaminants, while scattering of the evaporated materials is minimised, thereby maintaining the highly directional nature of the evaporated species.


Figure 1. Growth rates of metals in an electron- beam evaporator decrease with distance from the source to the substrate, and vary with angle


The directional nature limits photoresist via sidewall coverage when the substrate is oriented perpedicularly to the evaporant flux. However, a substrate oriented perpendicularly to the evaporant flux only receives truly normal incident flux at its centre, with some angular variation of the incident flux across the width of the substrate. This can be kept within a desired range by placing it at an appropriate distance from the source. The greater the distance, the smaller the


deviation from normal incidence, with a lower deposition rate as one price to pay. Although the rate can be cranked up by increasing the source power density, there are material-based limits to what is practical. Unfortunately, the nature of the process is such that when an array of perpendicularly oriented substrates are placed at a fixed distance from the source, the deposition thickness will not be inherently uniform, but have some variation in thickness across and between substrates at different locations.


At Temescal, a division of Ferrotec based in Livermore, California, we have devoted much effort to exploring the critical interrelationships between electron beam system architecture, material behaviour and process methodology in order to devise approaches that lead to higher uniformities for electron beam


March 2014 www.compoundsemiconductor.net 27


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164