This page contains a Flash digital edition of a book.
Novel Devices ♦ news digest


Heer adds. “We are already able to steer these electrons and we can switch them using rudimentary means. We can put a roadblock, and then open it up again. New kinds of switches for this material are now on the horizon.”


Theoretical explanations for what the researchers have measured are incomplete. De Heer speculates that the graphene nanoribbons may be producing a new type of electronic transport similar to what is observed in superconductors.


“There is a lot of fundamental physics that needs to be done to understand what we are seeing,” De Heer continues. “We believe this shows that there is a real possibility for a new type of graphene-based electronics.”


Georgia Tech researchers have pioneered graphene- based electronics since 2001, for which they hold a patent, filed in 2003. The technique involves etching patterns into electronics-grade SiC wafers, then heating the wafers to drive off silicon, leaving patterns of graphene.


This work has been detailed in the paper, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” by Jens Baringhaus et al in Nature 2013, published online on 5th February 2014.DOI:10.1038/nature12952


Controlling photons with InGaN quantum dots


By emitting photons from an indium gallium nitride quantum dot at the top of a GaN micropyramid, researchers have created a polarised light source. The device can be used in applications such as energy-saving computer screens and wiretap-proof communications


Polarised light - where all the light waves oscillate on the same plane - forms the foundation for technology such as LCD displays in computers and TV sets, and advanced quantum encryption.


Normally, this is created by normal unpolarised light passing through a filter that blocks the unwanted light waves. At least half of the light emitted, and thereby an equal amount of energy, is lost in the process.


A better method is to emit light that is polarised right at the source. This can be achieved with quantum dots - crystals of semiconductive material so small that they produce quantum mechanical phenomena. But until now, they have only achieved polarisation that is either entirely too weak or hard to control.


A semiconductive materials research group led by Per Olof Holtz, a professor at Linköping University, have now developed an alternative method.


The concept is based on InGaN QDs grown on top of elongated GaN hexagonal pyramids, by which the predefined elongation determines the polarisation vectors of the emitted photons from the QDs. This growth scheme should allow fabrication of ultra-compact arrays of photon emitters, with a controlled polarisation direction for each individual emitter.


With these, they have succeeded in creating light with a high degree of linear polarisation, on average 84 percent. The results are being published in the Nature periodical Light: Science & Applications.


“We’re demonstrating a new way to generate polarised light directly, with a predetermined polarisation vector and with a degree of polarisation substantially higher than with the methods previously launched,” Holtz says.


In experiments, quantum dots were used that emit violet light with a wavelength of 415 nm, but the photons can in principle take on any colour at all within the visible spectrum by varying the indium content.


Two ways of creating polarised light (Credit: Fredrik Karlsson, LiU)


“Our theoretical calculations point to the fact that an increased amount of indium in the quantum dots further improves the degree of polarisation,” says reader Fredrik Karlsson, one of the authors of the article.


The micropyramid is constructed through crystalline growth, atom layer by atom layer, of the semiconductive material GaN. A couple of nanothin layers where the metal indium is also included are laid on top of this. From the asymmetrical quantum dot thus formed at the top,


March 2014 www.compoundsemiconductor.net 163


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164