This page contains a Flash digital edition of a book.
TECHNOLOGY SUBSTRATES


variety of thin films of 2-inch semi-polar material, based on orientations such as {1011}, {1122}, and {2021}.


Although producing these thin films is important, for practical applications bulk substrates are needed, and that means the deposition of thick, crack-free layers of GaN that are free from anomalous growth. We have done just that by turning to new sample structures for the fabrication of a semi-polar {2021} GaN substrate using SiO2


stripe-masked templates (see Figure 4). Optimised SiO2 striped


masks were prepared in the direction perpendicular to the a-axis on a 2-inch {2021} GaN templates, prior to the of growth of a 1.4 mm-thick GaN layer at a deposition rate of 350 mm/h. The growth tool employed is a vertical-flow-type HVPE apparatus equipped with liquid gallium source, hydrogen chloride, ammonia, nitrogen and a hydrogen gas cylinder.


The SiO2


stripes play a crucial role in this substrate formation process. Without the striped mask, GaN forms a rough and cracked surface. But when it’s there, the surface is far smoother, with roughening originating from unintentional anomalous growth regions on the template – note that these regions were completely embedded during selective area growth by HVPE. What’s more, the SiO2


mask is


effective on other planes, such as {1011} or {1122}, when growing GaN on patterned sapphire.


Another attractive feature of our approach is the effective self-separation of the patterned sapphire and the GaN film. In comparison, typical methods employed for separating a GaN layer grown on a foreign substrate are more involved, such as mechanical polishing, laser or chemical lift-off, or self-separation via the growth of an intentional interlayer. With these more common methods, an additional process is required before or after HVPE growth of GaN.


When a layer of GaN is grown on sapphire, as the wafer cools thermal stress is induced in both materials, due to a difference in the thermal expansion coefficients, and this leads to a maximum shear stress at the heterointerface. We take advantage of that with our approach:


Figure 5. As grown surface of various orientations of GaN. Normarski microscope images of a {2021} GaN layer are also shown. The red arrows show the cracks


Figure 4. Experimental set-up. (a) A 1.4 mm-thick GaN layer was grown on a SiO2


masked template.


(b) HVPE apparatus can accommodate a 6-inch substrate. Four, 2-inch wafers were loaded in this work


Figure 6. A GaN substrate formed by chemical mechanical polishing. (a) Photograph of 2 inch c-plane, {1122} and {2021} GaN wafer. (b) Surface morphology of the chemical-mechanical polished {2021} GaN substrate measured by a scanning white light interferometer


50 www.compoundsemiconductor.net March 2014


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164