TECHNOLOGY SUBSTRATES
variety of thin films of 2-inch semi-polar material, based on orientations such as {1011}, {1122}, and {2021}.
Although producing these thin films is important, for practical applications bulk substrates are needed, and that means the deposition of thick, crack-free layers of GaN that are free from anomalous growth. We have done just that by turning to new sample structures for the fabrication of a semi-polar {2021} GaN substrate using SiO2
stripe-masked templates (see Figure 4). Optimised SiO2 striped
masks were prepared in the direction perpendicular to the a-axis on a 2-inch {2021} GaN templates, prior to the of growth of a 1.4 mm-thick GaN layer at a deposition rate of 350 mm/h. The growth tool employed is a vertical-flow-type HVPE apparatus equipped with liquid gallium source, hydrogen chloride, ammonia, nitrogen and a hydrogen gas cylinder.
The SiO2
stripes play a crucial role in this substrate formation process. Without the striped mask, GaN forms a rough and cracked surface. But when it’s there, the surface is far smoother, with roughening originating from unintentional anomalous growth regions on the template – note that these regions were completely embedded during selective area growth by HVPE. What’s more, the SiO2
mask is
effective on other planes, such as {1011} or {1122}, when growing GaN on patterned sapphire.
Another attractive feature of our approach is the effective self-separation of the patterned sapphire and the GaN film. In comparison, typical methods employed for separating a GaN layer grown on a foreign substrate are more involved, such as mechanical polishing, laser or chemical lift-off, or self-separation via the growth of an intentional interlayer. With these more common methods, an additional process is required before or after HVPE growth of GaN.
When a layer of GaN is grown on sapphire, as the wafer cools thermal stress is induced in both materials, due to a difference in the thermal expansion coefficients, and this leads to a maximum shear stress at the heterointerface. We take advantage of that with our approach:
Figure 5. As grown surface of various orientations of GaN. Normarski microscope images of a {2021} GaN layer are also shown. The red arrows show the cracks
Figure 4. Experimental set-up. (a) A 1.4 mm-thick GaN layer was grown on a SiO2
masked template.
(b) HVPE apparatus can accommodate a 6-inch substrate. Four, 2-inch wafers were loaded in this work
Figure 6. A GaN substrate formed by chemical mechanical polishing. (a) Photograph of 2 inch c-plane, {1122} and {2021} GaN wafer. (b) Surface morphology of the chemical-mechanical polished {2021} GaN substrate measured by a scanning white light interferometer
50
www.compoundsemiconductor.net March 2014
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164