This page contains a Flash digital edition of a book.
Jintang’s Green Iron Foundry


A Chinese cast iron facility incorporates the combined use of a blast furnace and medium frequency induction furnace for reduced energy consumption. XU GUANGRONG, QIAN’AN JINTANG DUCTILE CAST IRON PIPE CO. LTD., QIAN’AN CITY HEBEI PROVINCE, CHINA


以短流程铸造为特色 建设绿色铸造生产基地


短流程铸造工艺作为一种新的生产工艺,具有明显的节能减排、降低成本优势, 发展前景十分广阔。


■ 迁安市津唐球墨铸管有限公司 许广荣


energy consumption, metalcasting facilities can reduce the amount of pollutants they discharge and realize sig- nificant economic and social benefits. One method to reduce energy consumption and cost while improving working conditions and casting quality is to use a shortcut melting and holding procedure con- sisting of the joint use of a blast furnace and a medium frequency induction furnace, which can shorten the manufacturing process. Compared with the traditional procedure of combined cupola and induction furnace operation, the shortcut pro- cedure can save 4,000 tons of coal annually for a casting production volume of 200,000 tons with a 70% yield rate and 10% reject rate. Seven million kWh of electricity can be saved with a standard power consumption level of 550 kWh per ton of melting. Tons of pollutants, dusts and harmful emissions are


A


discharged during the production of coke. No coke is used in the shortcut procedure, so the discharge of 150-200 tons of pollutants, 7-10 tons of hydrogen fluoride, 5-8 tons of sulfur dioxide and 20-30 tons of carbon monoxide are avoided each year. Although the shortcut technology has a series of


advantages, it has not yet been widely applied. It is used only for the production of castings with simple shapes and low mechanical properties requirements. This is because 1) blast furnaces and induction furnaces are mis- matched in production volume and 2) the microstructure and mechanical properties produced by the new technol- ogy cannot meet the requirements of high quality cast- ings. The disadvantages are due to blast furnace location, production volume and the time required to supply the melt. Generally speaking, foundries are not located near blast furnaces, so shipping the melt is difficult. A blast furnace’s volume greatly exceeds most foundries’ require-


s part of one of the highest energy-con- suming and pollution-producing industries, metalcasting facilities must make reforms for sustainable development. By reducing


前,我国能源紧缺和环境污染态势不容 乐观。为了社会和经济的可持续发展, 作为高能耗、高污染行业之一,铸造行 业的改造首当其冲。因此,我国铸造厂家迫切需要 采用先进设备和节能降耗工艺,以提升铸造技术水 平,实现铸造业可持续发展。采用高炉-中频炉双 联熔炼的短流程铸造工艺生产高质量铸铁件,可缩 短生产流程、降低能耗和生产成本、改善劳动条 件,同时能获得高质量铸件。采用高炉-中频炉双 联熔炼短流程替代常规流程,缩短了产品生产链, 使能耗降低;由于高能耗必然伴随污染物高排放, 因此能耗降低,排污量也降低,减轻了环境保护负 担,会产生显著经济效益和社会效益。 据统计,采用常规熔炼工艺与短流程工艺相比较,以 年产2万t铸件、铸件出品率70%、铸件合格率90%计 算,在节能方面,冲天炉熔炼的常规流程,根据8:1的 铁焦比,采用高炉-中频炉双联熔炼短流程生产每年可 节约焦炭约4,000t。与采用感应电炉熔炼的常规流程相 比,按每吨生铁熔化需电550 kWh计,短流程生产每年 可节约用电700万kWh。在环境效益方面,以焦炭提供 能源的常规流程生产,会向周围环境排出大量粉尘、废 渣和有害气体。短流程生产由于不用焦炭,因此每年向 周围环境少排放粉尘 150~200t,HF 7~10t,SO2


目 5 ~8t,CO 20~30t。


尽管高炉-感应炉双联熔炼短流程生产工艺比常规生 产工艺具有明显的经济和环保优势,但迄今为止该工艺 并没有得到广泛应用,仅停留在生产形状简单、力学性 能要求较低的铸件上。主要原因,首先是高炉和感应电 炉在生产规模上不配套,另外是短流程工艺生产的铸件 组织和性能很难达到高质量铸件的要求。高炉和感应电 炉的不配套表现在地理位置、产量、铁液供应时间等几 方面。很多铸造厂不与高炉毗邻,铁液转运困难;即便


Fall 2011 FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 57


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85