This page contains a Flash digital edition of a book.
Hathaway pointed out. “Lightweight components may be more expensive, but if it means fewer trips to the plant or fi eld, it pays for itself.” As part of the nano-research, Oshkosh is studying tensile samples sent to its lab to look at how the samples fracture and measure particle spacing and distribution. T e OEM also has selected a cast iron part to be reproduced using nanotechnology. “Once we have characterized the material and feel


confident the process can be controlled, we will make the part and perform durability and other testing on it,” Hathaway said. “Provided it passes those tests, we would look at taking advantage of the weight savings [for a production part].” Currently, strength is the main benefi t of nanoparticles


driving casting research. However, researchers also have discovered that adding nanoparticles to alloys conventionally considered to be prone to hot tearing, such as the aluminum 200 series, arrests that tendency. “It increases the possible complexity level for producing


castings in hot-tear prone alloys,” Weiss said. “It is leading us to a position to say that not only can it be possible to increase the strength, but it could also improve castability.” 


CLICK HERE for additional content on nanoparticles.


贵也值得。”


作为纳米研究的一部分,奥什科什正在研究送到他 们实验室的拉伸试样,观察断口以及颗粒的分布。原始 设备制造商也选用了一个铸铁件使用纳米技术来重新 生产。


“只要我们研究清楚了这种材料并对生产流程做精确 地控制,我们就会制造该零件并测试它的耐用性及其它 指标,” Hathaway说,“假如它能够通过这些测试, 我们就会在(零件生产的)重量上获得优势。” 现在,强度是纳米颗粒的主要好处,这是推动铸件研 究的动力。然而,研究人员也发现在合金中添加纳米颗 粒会减小易热裂合金例如铝合金200系列的热裂倾向性。 “它意味着对于有较大热裂倾向性合金可以生产更加 复杂的铸件,” Weiss说,“它将使我们说纳米不仅能 够增加强度,也能改善铸造性能。”


点击这里纳米粒子的其他内容。


Physical Vapor Deposition—T in fi lm materials are pre-


pared with structural control at the atomic or nanometer scale by careful monitoring of the processing conditions. T e method involves the generation of vapor phase species either via evapora- tion, sputtering, laser ablation or ion beam. Chemical Vapor Deposition—One or more gaseous


adsorption species react or decompose on a hot surface to form stable solid products. Electrodeposition—Nanocrystalline deposits are formed


on a cathode surface during plating by properly controlling the electrodeposition parameters. Sol-gel—T is method has been used for producing metal


oxide and ceramic powders with high purity and homogene- ity for many years. It off ers a degree of control of composition and structure at the molecular level. T e process involves the generation of colloidal suspensions (“sols”) that are subsequently converted to viscous gels and solid materials. Mechanical Alloying/Milling—During this process, raw


powder particles with a size of several microns experience severe plastic deformation. T is is now recognized as a versatile process for the fabrication of a broad range of nanocrystalline powders, including amorphous alloys, nanocrystalline metals/alloys and supersaturated solid solution. 


T is article, written by JP Arul Mozhi Varman, WABCO-TVS (In- dia) Ltd., Chennai, India, is based on “Diverse Applications in Auto- mobile Industry,” published in the August 2009 issue of Nano Digest.


备出结构控制在原子级或纳米级的薄膜材料。这种方法 通过蒸发、溅射、激光蒸发或粒子束的方式将材料变成 气相。


化学气相沉积——一种或多种气体吸附在一个热的 表面反应或分解形成稳定的固体产品。 电镀沉积——在适合的电镀参数控制下进行电镀, 在阴极表面会形成纳米晶体沉积物。 溶胶凝胶——多年来,这种方法用来生产高纯度高 均匀性的金属氧化物和陶瓷粉末。它能将成分和结构 控制到分子级别。这种工艺方法首先生成胶体悬浮物 (“sols”),然后将这些悬浮物转变成粘性胶和固体 材料。


机械合金化/机械碾磨——在这个工艺中,尺寸为几个 微米的原始粉末经历严重的塑性变形。这被认为是生产 广域度纳米晶粉末的万能方法,广域度纳米晶包括非晶 合金、纳米晶金属/合金和过饱和固溶体。


JP Arul MozhiVarman,威伯科公司(印度),金奈,印度. 本文摘自“汽车工业的多样性应用”一文,该文首次发表在 2009年8月发行的《纳米文摘》上。


Fall 2011 FOUNDRY-PLANET.COM | MODERN CASTING | CHINA FOUNDRY ASSOCIATION | 31


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85