search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
HAIR CARE Test 1 ■ Test 2 ■ Sample 3 (with microgel)


Sample 2 (with Xanthan gum) Sample 1 (control)


0


0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 g of removed lanolin


Figure 4: Test results of pair cleansing on virgin untreated hair tresses, comparing model formulations of sulphate-free baby shampoo with polysaccharide microgels, with a shampoo sample with xanthan gum and a control sample (in grams of removed lanolin)


polysaccharide microgels Sample III rinsed off faster than the Sample II formulation with xanthan gum by 8.4% under current testing methodology (Figure 5).


Conclusion The global trend towards mindful consumption shapes aspects of environmental orientation, sustainable development, biodegradability, product safety, and efficiency. Meeting all these requirements, Biopolax


Glucover 01 polysaccharide microgels are an effective component for creating shampoos with enhanced chelating and cleansing properties. It stabilises the rheological characteristics


of cosmetic products and provides excellent sensory and aesthetic qualities. Thus, polysaccharide microgels combine the functional characteristics of various single components (thickeners, complexing agents, aesthetic appearance modifiers, etc.) without losing consumer properties. In most cases, the recommended usage


percentage is between 2.5% and 5.0% (by product) for the most pronounced effect in the final product.


References 1. Fernandes ACBCJ, Yang P, Armstrong D, França R. Metal distributions in human hair


PC


strand cross-section: Advanced analysis using LA-ICP-MS in dentistry. Talanta. 2023; 265: 124909


2. Evans AO, Marsh JM, Wickett RR. The uptake of water hardness metals by human hair. Journal of Cosmetic Science. 2011; 383–391


3. Chojnacka K, Górecka H, Chojnacki A, Górecki H. Inter-element interactions in human hair. Environmental Toxicology and Pharmacology. 2005; 368–374.


4. Evans AO, Marsh JM, Wickett RR. The uptake of water hardness metals by human hair. Journal of Cosmetic Science. 2011; 383–391.


5. SOFW Journal 10/23. – Vol.149. Thannhausen, Germany, 16 October, 2023


57


www.personalcaremagazine.com


January 2025 PERSONAL CARE


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76