search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
7


Figure 3. Example of multiplex analysis for Cytochrome P450 assay.


3. Maximise Throughput with a Multiplex Confi guration


Figure 2. Example of carryover of a standard solution of Glucose 6-phosphate. a) Outside needle rinse by dipping into R0 (50 % methanol aq.) b) Outside needle rinse by dipping into R0 (water), internal needle surface and injection port rinse by R1 (mixture of formic acid, methanol, acetonitrile and isopropyl alcohol) [2].


RPLC gradient analysis requires performing various processes, such as the needle rinse, column washing and re-equilibration as preparation for the next sample injection. While these are essential processes to generate meaningful data, they result in additional ‘non-data-acquisition time’ that impacts throughput. Reducing the time where the MS sits idle, waiting for the LC to wash and re-set, could dramatically increase throughput and lead to higher laboratory productivity. Hence, a front-end confi guration that offers to overlap the data acquisition time and washing/equilibration phase by switching between two streams into one LC-MS is an ideal solution to close to double sample throughput in one system. Figure 3 [3] shows an example where this Dual Stream Technology was used for analysis of four biomarkers for the four major molecular species in the Cytochrome P450 family. Analysis could be completed in only 38 seconds compared to 1 minute 22 seconds using the conventional single stream approach, saving 44 seconds per sample.


Conclusion


LC-MS/MS is a powerful technique for quantitative assays, as it offers high selectivity and sensitive detection. For a laboratory to achieve and maintain high sample throughput and gain as much information as possible from each sample, it is essential to carefully consider the characteristics of the front-end UHPLC system. Certainly, sample injection speed and capacity, the autosampler’s ability to reduce carry-over, while maintaining a high-speed injection cycle, and the possibility to perform multiplex analysis should be considered in an advanced UHPLC front- end confi guration, to achieve high effi ciency and a maximum in sample throughput.


References


1. T. Uchikata, D. Vecchietti, Ultra-Fast Analysis of Drugs in Biological Fluids with the SIL-40 Autosampler - Analytical Intelligence Part 5, Shimadzu Technical Report (C190-E228) 2. K. Watanabe, C. Campbell et. al., Prominent Features of Shimadzu UHPLC for an LC/MS Assay, Shimadzu Technical Report (C190-E282) 3. Nexera MX brochure (C190-E190), Shimadzu Corporation, 2020


Read, Share and Comment on this Article, visit: www.labmate-online.com/article


Our articles are read by over 73,000 readers in print, online and via our Mobile App. Interested in publishing a


Technical Article?


Contact Gwyneth on +44 (0)1727 855574


or email: gwyneth@intlabmate.com


WWW.LABMATE-ONLINE.COM


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72